只运行一次sideEffect

时间:2019-06-28 09:07:49

标签: gremlin

我有一个像这样的小图:

g.addV('person').property(id, 'p1').property('name', 'mark')
g.addV('person').property(id, 'p2').property('name', 'mark')
g.addV('person').property(id, 'p3').property('name', 'jack')
g.addV('person').property(id, 'p4').property('name', 'steve')

g.addE('knows').from(V('p1')).to(V('p2')).property('since', 2001)
g.addE('knows').from(V('p1')).to(V('p3')).property('since', 2010)
g.addE('knows').from(V('p2')).to(V('p3')).property('since', 2012)
g.addE('knows').from(V('p3')).to(V('p4')).property('since', 2019)

我想提交查询以满足以下两个需求:

  • 获得“自”以来大于2005的所有边缘
  • 过滤这些边缘,找出inV的{​​{1}}朋友

到目前为止,我只能编写以下查询:

p1

查询结果符合预期:

g.E().hasLabel('knows').has('since', gt(2005)).
    sideEffect(
    V('p1').out().aggregate('friends')).
    where(inV().where(within('friends')))

问题是gremlin> g.E().hasLabel('knows').has('since', gt(2005)). ......1> sideEffect( ......2> V('p1').out().aggregate('friends')). ......3> where(inV().where(within('friends'))) ==>e[26][p1-knows->p3] ==>e[27][p2-knows->p3] 步骤运行了三次,我只想运行一次。

1 个答案:

答案 0 :(得分:2)

sideEffect()将运行与遍历遍历遍历的次数相同的次数。您可以profile()遍历以查看发生了什么事:

gremlin> g.E().hasLabel('knows').has('since', gt(2005)).
......1>   sideEffect(V('p1').out().aggregate('friends')).
......2>   where(inV().where(within('friends'))).profile()
==>Traversal Metrics
Step                                                               Count  Traversers       Time (ms)    % Dur
=============================================================================================================
TinkerGraphStep(edge,[~label.eq(knows), since.g...                     3           3           0.180    10.58
TraversalSideEffectStep([TinkerGraphStep(vertex...                     3           3           0.859    50.48
  TinkerGraphStep(vertex,[p1])                                         3           3           0.234
  VertexStep(OUT,vertex)                                               6           6           0.134
  AggregateStep(friends)                                               6           6           0.226
TraversalFilterStep([EdgeVertexStep(IN), Profil...                     2           2           0.662    38.95
  EdgeVertexStep(IN)                                                   3           3           0.036
  WherePredicateStep(within([friends]))                                                        0.126
                                            >TOTAL                     -           -           1.702        -
在给定过滤器的情况下,

g.E()会产生3个遍历器,因此sideEffect()会得到3个遍历器,这意味着该步骤将执行3次。要使其执行一次,只需将3减少到1-可以使用fold()来完成,它将将三个收集到一个列表中,然后在sideEffect()之后展开该列表:

gremlin> g.E().hasLabel('knows').has('since', gt(2005)).
......1>   fold().
......2>   sideEffect(V('p1').out().aggregate('friends')).
......3>   unfold().
......4>   where(inV().where(within('friends'))).profile()
==>Traversal Metrics
Step                                                               Count  Traversers       Time (ms)    % Dur
=============================================================================================================
TinkerGraphStep(edge,[~label.eq(knows), since.g...                     3           3           0.203    18.23
FoldStep                                                               1           1           0.072     6.52
TraversalSideEffectStep([TinkerGraphStep(vertex...                     1           1           0.329    29.54
  TinkerGraphStep(vertex,[p1])                                         1           1           0.075
  VertexStep(OUT,vertex)                                               2           2           0.061
  AggregateStep(friends)                                               2           2           0.076
UnfoldStep                                                             3           3           0.275    24.67
TraversalFilterStep([EdgeVertexStep(IN), Profil...                     2           2           0.234    21.04
  EdgeVertexStep(IN)                                                   3           3           0.032
  WherePredicateStep(within([friends]))                                                        0.066
                                            >TOTAL                     -           -           1.115   

所以,我认为这是您问题的直接答案。如果我进行更深入的研究,我想知道您是否有理由说明此处描述的复杂性。如果您想找到代表“ p1”的朋友(“ 2005”之后)的传入边缘的边缘,那么我认为可以通过以下方式实现:

gremlin> g.V('p1').out('knows').inE('knows').has('since',gt(2005))
==>e[5][p1-knows->p3]
==>e[6][p2-knows->p3]