JDBC Sink连接器抛出java.sql.BatchUpdateException

时间:2019-06-27 10:49:24

标签: apache-kafka teradata apache-kafka-connect

几周前,我启动了Sink JDBC。一切正常,直到日志开始引发此错误:

[2019-06-27 11:35:44,121] WARN Write of 500 records failed, remainingRetries=10 (io.confluent.connect.jdbc.sink.JdbcSinkTask:68)
java.sql.BatchUpdateException: [Teradata JDBC Driver] [TeraJDBC 16.20.00.10] [Error 1338] [SQLState HY000] A failure occurred while executing a PreparedStatement batch request. Details of the failure can be found in the exception chain that is accessible with getNextException.
        at com.teradata.jdbc.jdbc_4.util.ErrorFactory.makeBatchUpdateException(ErrorFactory.java:149)
        at com.teradata.jdbc.jdbc_4.util.ErrorFactory.makeBatchUpdateException(ErrorFactory.java:138)
        at com.teradata.jdbc.jdbc_4.TDPreparedStatement.executeBatchDMLArray(TDPreparedStatement.java:276)
        at com.teradata.jdbc.jdbc_4.TDPreparedStatement.executeBatch(TDPreparedStatement.java:2754)
        at io.confluent.connect.jdbc.sink.BufferedRecords.flush(BufferedRecords.java:99)
        at io.confluent.connect.jdbc.sink.BufferedRecords.add(BufferedRecords.java:78)
        at io.confluent.connect.jdbc.sink.JdbcDbWriter.write(JdbcDbWriter.java:62)
        at io.confluent.connect.jdbc.sink.JdbcSinkTask.put(JdbcSinkTask.java:66)
        at org.apache.kafka.connect.runtime.WorkerSinkTask.deliverMessages(WorkerSinkTask.java:429)
        at org.apache.kafka.connect.runtime.WorkerSinkTask.poll(WorkerSinkTask.java:250)
        at org.apache.kafka.connect.runtime.WorkerSinkTask.iteration(WorkerSinkTask.java:179)
        at org.apache.kafka.connect.runtime.WorkerSinkTask.execute(WorkerSinkTask.java:148)
        at org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:139)
        at org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:182)
        at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)

我已经尝试将batch.size属性降低到100,甚至仍然失败。

添加的连接器状态:

{"name":"teradata-sink-K_C_OSUSR_DGL_DFORM_I1-V2",
"connector":{
"state":"RUNNING",
"worker_id":"10.28.148.64:41029"},
"tasks":[{"state":"FAILED","trace":"org.apache.kafka.connect.errors.ConnectException: Exiting WorkerSinkTask due to unrecoverable exception.
 org.apache.kafka.connect.runtime.WorkerSinkTask.deliverMessages(WorkerSinkTask.java:451)\n\tat org.apache.kafka.connect.runtime.WorkerSinkTask.poll(WorkerSinkTask.java:250)
 org.apache.kafka.connect.runtime.WorkerSinkTask.iteration(WorkerSinkTask.java:179)\n\tat org.apache.kafka.connect.runtime.WorkerSinkTask.execute(WorkerSinkTask.java:148)
 org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:139)
 org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:182)
 java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
 java.util.concurrent.FutureTask.run(FutureTask.java:266)
 java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
 java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
 java.lang.Thread.run(Thread.java:748)\n","id":0,"worker_id":"10.28.148.64:41029"}]} 

1 个答案:

答案 0 :(得分:0)

在尝试使用JDBC从Spark写入Teradata时,我遇到了类似的问题。显然,这仅发生在teradata上。当您尝试使用多个JDBC连接并行地写入一个表时,会发生这种情况。就我而言,spark在将数据写入Teradata时将多个jdbc连接分叉到了teradata。 您的选择是:

  • 您必须限制您的应用程序以免创建多个jdbc 连接,则可以从Viewpoint监视它(如果有访问权限)。

  • 您可以尝试提供jdbc type = FASTLOAD并查看其是否正常运行。 like this

  • 或者选择内部处理此问题的TPT。