TypeError:__init __()为参数'test_size'获得了多个值

时间:2019-06-27 04:12:08

标签: python-3.x scikit-learn

我之前使用过sklearn.cross_validation import StratifiedShuffleSplit。但是它没有用。然后我尝试了from sklearn.model_selection import StratifiedShuffleSplit,它抛出以下错误:

import os

import numpy as np

def _load_cifar10_batch(file): 

    import pickle as cPickle

    fo = open(file, 'rb') 

    dict = cPickle.load(fo, encoding='latin1') 

    fo.close() 

    return dict['data'].reshape(-1, 32, 32, 3), dict['labels'] # reshaping the data to 32 x 32 x 3  

print('Loading...') 

batch_fns = [os.path.join("./", 'cifar-10-batches-py', 'data_batch_' + str(i)) for i in range(1, 6)] 

data_batches = [_load_cifar10_batch(fn) for fn in batch_fns] 


data_all = np.vstack([data_batches[i][0] for i in range(len(data_batches))]).astype('float') 

labels_all = np.vstack([data_batches[i][1] for i in range(len(data_batches))]).flatten()

#Splitting the whole training set into 92:8

seed=7

from sklearn.model_selection import StratifiedShuffleSplit


data_split = StratifiedShuffleSplit(labels_all,1, test_size=0.08,random_state=seed) #creating data_split object with 8% test size 

for train_index, test_index in data_split:

    split_data_92, split_data_8 = data_all[train_index], data_all[test_index]        

    split_label_92, split_label_8 = labels_all[train_index], labels_all[test_index]
TypeError                                 Traceback (most recent call last)
<ipython-input-29-a61d57ed4f74> in <module>
      6 
      7 
----> 8 data_split = StratifiedShuffleSplit(labels_all,1, test_size=0.08,random_state=seed) #creating data_split object with 8% test size
      9 
     10 for train_index, test_index in data_split:

TypeError: __init__() got multiple values for argument 'test_size'

0 个答案:

没有答案