我主要移植了SB OpenGL中的Dragon示例。该程序的输出gif在代码下方。
我的问题是什么是python中的lookat函数?
支持文件:dragon.zip只需将pydragon.py放入文件夹“ dragon”并运行
pydragon.py的源代码
#!/usr/bin/python3
import sys
import time
sys.path.append("./shared")
from sbmloader import SBMObject # location of sbm file format loader
from ktxloader import KTXObject # location of ktx file format loader
from sbmath import m3dDegToRad, m3dRadToDeg, m3dTranslateMatrix44, m3dRotationMatrix44, m3dMultiply, m3dOrtho, m3dPerspective, rotation_matrix, translate, m3dScaleMatrix44
fullscreen = True
import numpy.matlib
import numpy as np
import math
try:
from OpenGL.GLUT import *
from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.raw.GL.ARB.vertex_array_object import glGenVertexArrays, glBindVertexArray
except:
print ('''
ERROR: PyOpenGL not installed properly.
''')
sys.exit()
identityMatrix = [1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1]
clear_program = GLuint(0)
append_program = GLuint(0)
resolve_program = GLuint(0)
class textures:
color = GLuint(0)
normals = GLuint(0)
class uniforms_block:
mv_matrix = (GLfloat * 16)(*identityMatrix)
view_matrix = (GLfloat * 16)(*identityMatrix)
proj_matrix = (GLfloat * 16)(*identityMatrix)
uniforms_buffer = GLuint(0)
class uniforms:
mvp = GLuint(0)
fragment_buffer = GLuint(0)
head_pointer_image = GLuint(0)
atomic_counter_buffer = GLuint(0)
dummy_vao = GLuint(0)
uniform = uniforms()
myobject = SBMObject()
def length(v):
return math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2])
def normalize(v):
l = length(v)
#if (v[0] == 0 and v[1] == 0 and v[2] ==0):
# return [0.0, 1/3, 0.0]
return [v[0]/l, v[1]/l, v[2]/l]
def dot(v0, v1):
return v0[0]*v1[0]+v0[1]*v1[1]+v0[2]*v1[2]
def cross(v0, v1):
return [
v0[1]*v1[2]-v1[1]*v0[2],
v0[2]*v1[0]-v1[2]*v0[0],
v0[0]*v1[1]-v1[0]*v0[1]]
def m3dLookAt(eye, target, up):
mz = normalize( (eye[0]-target[0], eye[1]-target[1], eye[2]-target[2]) ) # inverse line of sight
mx = normalize( cross( up, mz ) )
my = normalize( cross( mz, mx ) )
tx = dot( mx, eye )
ty = dot( my, eye )
tz = -dot( mz, eye )
return np.array([mx[0], my[0], mz[0], 0, mx[1], my[1], mz[1], 0, mx[2], my[2], mz[2], 0, tx, ty, tz, 1])
def scale(s):
return [s,0,0,0, 0,s,0,0, 0,0,s,0, 0,0,0,1]
def link_from_shaders(shaders, shader_count, delete_shaders, check_errors=False):
program = GLuint(0)
program = glCreateProgram()
for i in range(0, shader_count):
glAttachShader(program, shaders[i]);
glLinkProgram(program);
if (delete_shaders):
for i in range(0, shader_count):
glDeleteShader(shaders[i]);
return program
def shader_load(filename, shader_type):
result = GLuint(0)
with open ( filename, "rb") as data:
result = glCreateShader(shader_type)
glShaderSource(result, data.read() )
glCompileShader(result)
return result
def load_shaders():
global clear_program
global append_program
global resolve_program
global uniform
shaders = [GLuint(0), GLuint(0)]
shaders[0] = shader_load("fragmentlist_shaders/clear.vs.glsl", GL_VERTEX_SHADER);
shaders[1] = shader_load("fragmentlist_shaders/clear.fs.glsl", GL_FRAGMENT_SHADER);
if (clear_program):
glDeleteProgram(clear_program);
clear_program = link_from_shaders(shaders, 2, True);
shaders[0] = shader_load("fragmentlist_shaders/append.vs.glsl", GL_VERTEX_SHADER);
shaders[1] = shader_load("fragmentlist_shaders/append.fs.glsl", GL_FRAGMENT_SHADER);
if (append_program):
glDeleteProgram(append_program);
append_program = link_from_shaders(shaders, 2, True);
uniform.mvp = glGetUniformLocation(append_program, "mvp");
shaders[0] = shader_load("fragmentlist_shaders/resolve.vs.glsl", GL_VERTEX_SHADER);
shaders[1] = shader_load("fragmentlist_shaders/resolve.fs.glsl", GL_FRAGMENT_SHADER);
if (resolve_program):
glDeleteProgram(resolve_program)
resolve_program = link_from_shaders(shaders, 2, True);
class Scene:
def __init__(self, width, height):
global uniforms_buffer
global fragment_buffer
global atomic_counter_buffer
global head_pointer_image
global dummy_vao
global myobject
self.width = width
self.height = height
load_shaders()
glGenBuffers(1, uniforms_buffer)
glBindBuffer(GL_UNIFORM_BUFFER, uniforms_buffer)
glBufferData(GL_UNIFORM_BUFFER, sizeof(GLfloat * 16 *3), None, GL_DYNAMIC_DRAW)
myobject.load("dragon.sbm")
glGenBuffers(1, fragment_buffer)
glBindBuffer(GL_SHADER_STORAGE_BUFFER, fragment_buffer);
glBufferData(GL_SHADER_STORAGE_BUFFER, 1024 * 1024 * 16, None, GL_DYNAMIC_COPY)
glGenBuffers(1, atomic_counter_buffer);
glBindBuffer(GL_ATOMIC_COUNTER_BUFFER, atomic_counter_buffer);
glBufferData(GL_ATOMIC_COUNTER_BUFFER, 4, None, GL_DYNAMIC_COPY);
head_pointer_image = glGenTextures(1)
glBindTexture(GL_TEXTURE_2D, head_pointer_image);
glTexStorage2D(GL_TEXTURE_2D, 1, GL_R32UI, 1024, 1024);
glGenVertexArrays(1, dummy_vao);
glBindVertexArray(dummy_vao);
def display(self):
green = [ 0.0, 0.1, 0.0, 0.0 ]
currentTime = time.time()
f = currentTime
zeros = [ 0.0, 0.0, 0.0, 0.0 ]
gray = [ 0.1, 0.1, 0.1, 0.0 ]
ones = [ 1.0 ]
glViewport(0, 0, self.width , self.height);
glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT | GL_ATOMIC_COUNTER_BARRIER_BIT | GL_SHADER_STORAGE_BARRIER_BIT);
glUseProgram(clear_program);
glBindVertexArray(dummy_vao);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glUseProgram(append_program)
model_matrix = (GLfloat * 16)(*identityMatrix)
model_matrix = scale(6.0)
view_matrix = (GLfloat * 16)(*identityMatrix)
view_matrix = m3dLookAt([math.cos(f * 0.35) * 120.0, math.cos(f * 0.4) * 30.0, math.sin(f * 0.35) * 120.0],
[0.0, -20.0, 0.0],
[0.0, 1, 0.0])
mv_matrix = (GLfloat * 16)(*identityMatrix)
mv_matrix = m3dMultiply(view_matrix , model_matrix)
proj_matrix = (GLfloat * 16)(*identityMatrix)
proj_matrix = m3dPerspective(m3dDegToRad(50.0), float(self.width) / float(self.height), 0.1, 1000.0)
glUniformMatrix4fv(uniform.mvp, 1, GL_FALSE, m3dMultiply(proj_matrix , mv_matrix))
zero = 0;
glBindBufferBase(GL_ATOMIC_COUNTER_BUFFER, 0, atomic_counter_buffer)
# next line not working ????
#glBufferSubData(GL_ATOMIC_COUNTER_BUFFER, 0, sys.getsizeof(zero), zero);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, fragment_buffer)
glBindImageTexture(0, head_pointer_image, 0, GL_FALSE, 0, GL_READ_WRITE, GL_R32UI)
glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT | GL_ATOMIC_COUNTER_BARRIER_BIT | GL_SHADER_STORAGE_BARRIER_BIT)
myobject.render()
glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT | GL_ATOMIC_COUNTER_BARRIER_BIT | GL_SHADER_STORAGE_BARRIER_BIT)
glUseProgram(resolve_program)
glBindVertexArray(dummy_vao)
glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT | GL_ATOMIC_COUNTER_BARRIER_BIT | GL_SHADER_STORAGE_BARRIER_BIT)
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4)
glutSwapBuffers()
def reshape(self, width, height):
self.width = width
self.height = height
def keyboard(self, key, x, y ):
global fullscreen
print ('key:' , key)
if key == b'\x1b': # ESC
sys.exit()
elif key == b'f' or key == b'F': #fullscreen toggle
if (fullscreen == True):
glutReshapeWindow(512, 512)
glutPositionWindow(int((1360/2)-(512/2)), int((768/2)-(512/2)))
fullscreen = False
else:
glutFullScreen()
fullscreen = True
print('done')
def init(self):
pass
def timer(self, blah):
glutPostRedisplay()
glutTimerFunc( int(1/60), self.timer, 0)
time.sleep(1/60.0)
if __name__ == '__main__':
start = time.time()
glutInit()
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH)
glutInitWindowSize(512, 512)
w1 = glutCreateWindow('OpenGL SuperBible - Fragment List')
glutInitWindowPosition(int((1360/2)-(512/2)), int((768/2)-(512/2)))
fullscreen = False
many_cubes = False
#glutFullScreen()
scene = Scene(512,512)
glutReshapeFunc(scene.reshape)
glutDisplayFunc(scene.display)
glutKeyboardFunc(scene.keyboard)
glutIdleFunc(scene.display)
#glutTimerFunc( int(1/60), scene.timer, 0)
scene.init()
glutMainLoop()
从fragmentlist.cpp移植而来,是在Superbible OpenGL第7版中找到的。
当前问题: 有什么想法为什么在龙上渲染的纹理不能像预期的输出那样具有半透明性?
答案 0 :(得分:1)
视图空间是本地系统,由场景上的视点定义。 视图的位置,视线和视图的向上方向定义了相对于世界坐标系的坐标系。场景的对象必须相对于视图坐标系绘制,以便从查看位置“看到”。视图坐标系的逆矩阵称为视图矩阵。该矩阵从世界坐标转换为视图坐标。
下面的代码定义了一个矩阵,该矩阵精确封装了计算场景外观所需的步骤:
Euclidean length的向量:
def length(v):
return math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2])
def normalize(v):
l = length(v)
return [v[0]/l, v[1]/l, v[2]/l]
def dot(v0, v1):
return v0[0]*v1[0]+v0[1]*v1[1]+v0[2]*v1[2]
def cross(v0, v1):
return [
v0[1]*v1[2]-v1[1]*v0[2],
v0[2]*v1[0]-v1[2]*v0[0],
v0[0]*v1[1]-v1[0]*v0[1]]
以下代码与gluLookAt
或glm::lookAt
相同:
参数eye
是视角,target
是观察点,up
是向上方向。
def m3dLookAt(eye, target, up):
mz = normalize( (eye[0]-target[0], eye[1]-target[1], eye[2]-target[2]) ) # inverse line of sight
mx = normalize( cross( up, mz ) )
my = normalize( cross( mz, mx ) )
tx = dot( mx, eye )
ty = dot( my, eye )
tz = -dot( mz, eye )
return np.array([mx[0], my[0], mz[0], 0, mx[1], my[1], mz[1], 0, mx[2], my[2], mz[2], 0, tx, ty, tz, 1])
像这样使用它:
view_matrix = m3dLookAt([0, 0, 20], [0, 0, 0], [0, 1, 0])