模拟中未定义的计数器值

时间:2019-06-26 13:07:50

标签: signals undefined vhdl counter

我对VHDL非常陌生,作为大学项目的一部分,我正在尝试创建具有四个状态的状态机。我写了一些VHDL代码和一个测试台,但是我还不能确认状态机是否可以正常工作,但是在解决了当前问题之后,我将对此进行验证:

状态机的一部分是一个无符号计数器,该计数器应确定是将数据提取到高字节还是低字节。在我的测试平台中,我只想确认此计数器是否全部正常工作。现在,在用0初始化之后,当计数过程第一次开始时,我收到一个未定义的值作为计数器值。

起初,我尝试将计数器实现为std_logic_vector,但我明白了,为什么这不起作用(没有强制转换)。因此,我切换到未签名状态,并期望计数器正常工作。 通过对单个进程进行注释,我发现,计数进程在进程“更改状态”和“ change_current_state”中产生了问题。但是我无法弄清楚为什么这些过程会相互干扰。 在我的测试台中,如果-语句“ change_current_state”从不到达“ RESET”,所以它无法为计数器分配值。另外,进程“ change_status”永远不会到达状态为“ prepareData”的elsif-语句。这是唯一为计数器分配值的语句。

VHDL代码:


library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity readFromADC is
    Port
        (
            CLK_IN  :   in  std_logic;
            RESET_IN_N  :   in std_logic;
            BUSY_IN :   in  std_logic;
            DATA_IN :   in  std_logic_vector(7 downto 0);
            ACK_ERROR_IN    :   in std_logic;

            ENABLE_I2C  :   out std_logic;
            ADDR_I2C    :   out std_logic_vector(6 downto 0);
            RW_I2C      :   out std_logic;
            DATA_WR_I2C :   out std_logic_vector(7 downto 0);

            DATA_OUT :  out std_logic_vector(15 downto 0);
            SHIFT_OUT_RDY   :   out std_logic;

            SHOWSTATE : out std_logic_vector (1 downto 0); -- debugging
            BYTECOUNTER: out unsigned (1 downto 0)
        );
end readFromADC;

architecture readFromADC_arch of readFromADC is

    constant const_data_wr    :   std_logic_vector(7 downto 0) := "00000000";
    constant const_rw_I2C :   std_logic := '1';
    constant const_addr_I2C :   std_logic_vector(6 downto 0) := "0101000";
    constant const_da2_control   :   std_logic_vector (3 downto 0) := "0000";

    type states is
        (
            idle,
            read,
            prepareData,
            shiftOut
        );
    signal sign_clk :   std_logic;

    signal sign_HighByte    :   std_logic_vector(7 downto 0);
    signal sign_LowByte    :   std_logic_vector(7 downto 0);

    signal current_state :   states;
    signal next_state :   states;

    signal sign_data_out :  std_logic_vector(15 downto 0);
    signal sign_ena_i2c : std_logic := '0'; 
    signal sign_count_bytes_uns : unsigned (1 downto 0) := "00"; 
    signal prepare_data_rdy :   std_logic := '0';
    signal sign_shift_out_rdy    :   std_logic := '0'; 
    signal debug_states         :   std_logic_vector (1 downto 0);

begin
    --Zuweisungen
    sign_clk <= CLK_IN;   

    ENABLE_I2C <= sign_ena_i2c;
    ADDR_I2C <= const_addr_I2C;
    RW_I2C <= const_rw_I2C;  
    DATA_WR_I2C <= const_data_wr;

    DATA_OUT <= sign_data_out;
    SHIFT_OUT_RDY   <= sign_shift_out_rdy;

    SHOWSTATE <= debug_states;
    BYTECOUNTER <= sign_count_bytes_uns;

    --nächsten Status zuweisen
    change_current_state : process (sign_clk, RESET_IN_N)
    begin
        if rising_edge(sign_clk) then
            if (RESET_IN_N = '0') then
                current_state <= idle;
                sign_shift_out_rdy <= '0';
                sign_data_out <= (others => '0');
                sign_count_bytes_uns <= "00";
            else
                current_state <= next_state;       
            end if;
        end if;
    end process change_current_state;

    --Status ändern
    change_status : process (current_state)
    begin
      if current_state = idle then
            debug_states <= "00";
            sign_shift_out_rdy <= '0';
            prepare_data_rdy <= '0';
            sign_ena_i2c <= '1';
        elsif current_state = read then
            debug_states <= "01";
--            sign_count_bytes <= sign_count_bytes + 1;
            sign_shift_out_rdy <= '0';
        elsif current_state = prepareData then
            debug_states <= "10";
            sign_ena_i2c <= '0';
--            sign_count_bytes <= "00";
        elsif current_state = shiftOut then
            sign_count_bytes_uns <= "00";
            debug_states <= "11";
            sign_shift_out_rdy <= '1';
        end if;
    end process change_status;

    acquireData : process (sign_count_bytes_uns, current_state)
    begin
        if current_state = read then
            if (sign_count_bytes_uns = 1) then
                sign_HighByte <= DATA_IN;
            elsif (sign_count_bytes_uns = 2) then
                sign_LowByte <= DATA_IN;
            end if;
        end if;
    end process acquireData;

    gatherData : process (current_state)
    begin
        if current_state = prepareData then
            sign_data_out <= const_da2_control & sign_HighByte(3 downto 0) &  sign_LowByte;
            prepare_data_rdy <= '1';
        end if;
    end process gatherData;

    --Dekodiere den nächsten Status
    next_state_decode: process (current_state, BUSY_IN, ACK_ERROR_IN, sign_count_bytes_uns, prepare_data_rdy, sign_shift_out_rdy)
    begin
        next_state <= current_state;  --Default: behalte den aktuellen Status
        case (current_state) is
            when Idle =>
                if (BUSY_IN = '0') AND (ACK_ERROR_IN = '0') then
                   next_state <= read;
                end if;
             when read =>
                if sign_count_bytes_uns >= 2 then
--                if sign_count_bytes = "11" then
                   next_state <= prepareData;
                end if;
             when prepareData =>
                if prepare_data_rdy = '1' then
                    next_state <= shiftOut;
                end if;
             when shiftOut =>
                if sign_shift_out_rdy = '1' then
                    next_state <= Idle;
                end if;
        end case;      
    end process next_state_decode;

    countBusy : process (BUSY_IN)
    begin
        if falling_edge(BUSY_IN) then
            sign_count_bytes_uns <= sign_count_bytes_uns + 1;
--            if (sign_count_bytes_uns <= 2) then
--                sign_count_bytes <= std_logic_vector (sign_count_bytes_uns);   
            if (sign_count_bytes_uns > 2) then
                sign_count_bytes_uns <= "00";
            end if;

        end if;

    end process countBusy;

测试台



library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity sim_read_adc is
--  Port ( );
end sim_read_adc;

architecture sim_read_adc_arch of sim_read_adc is
    component readFromADC is
    Port
        (
            CLK_IN  :   in  std_logic;
            RESET_IN_N  :   in std_logic;
            BUSY_IN :   in  std_logic;
            DATA_IN :   in  std_logic_vector(7 downto 0);
            ACK_ERROR_IN    :   in std_logic;

            ENABLE_I2C  :   out std_logic;
            ADDR_I2C    :   out std_logic_vector(6 downto 0);
            RW_I2C      :   out std_logic;
            DATA_WR_I2C :   out std_logic_vector(7 downto 0);

            DATA_OUT :  out std_logic_vector(15 downto 0);
            SHIFT_OUT_RDY   :   out std_logic;

            SHOWSTATE : out std_logic_vector (1 downto 0);
            BYTECOUNTER: out unsigned (1 downto 0)
        );
    end component readFromADC;

    signal sim_CLK_IN  :     std_logic;
    signal sim_RESET_IN_N  :   std_logic := '1';
    signal sim_BUSY_IN :    std_logic := '1';
    signal sim_DATA_IN :    std_logic_vector(7 downto 0) := "10101010";
    signal sim_ACK_ERROR_IN    :   std_logic := '0';

    signal sim_ENABLE_I2C  :   std_logic;
    signal sim_ADDR_I2C    :   std_logic_vector(6 downto 0);
    signal sim_RW_I2C      :   std_logic;
    signal sim_DATA_WR_I2C :   std_logic_vector(7 downto 0);

    signal sim_DATA_OUT :  std_logic_vector(15 downto 0);
    signal sim_SHIFT_OUT_RDY   : std_logic;

    signal sim_SHOWSTATE : std_logic_vector (1 downto 0);
    signal sim_BYTECOUNTER : unsigned (1 downto 0);
begin
    dut : readFromADC

    port map
        (
            CLK_IN     => sim_CLK_IN, 
            RESET_IN_N => sim_RESET_IN_N,
            BUSY_IN => sim_BUSY_IN,
            DATA_IN => sim_DATA_IN,
            ACK_ERROR_IN => sim_ACK_ERROR_IN,

            ENABLE_I2C => sim_ENABLE_I2C,
            ADDR_I2C => sim_ADDR_I2C,
            RW_I2C => sim_RW_I2C, 
            DATA_WR_I2C => sim_DATA_WR_I2C,

            DATA_OUT => sim_DATA_OUT,
            SHIFT_OUT_RDY => sim_SHIFT_OUT_RDY,

            SHOWSTATE => sim_SHOWSTATE,
            BYTECOUNTER => sim_BYTECOUNTER
        );

    clk_gen : process
    begin
        sim_CLK_IN <= '0';
        wait for 0.5us;
        sim_CLK_IN <= '1';
        wait for 0.5us;
    end process clk_gen;

    generate_busy : process
    begin
        wait for 5us;
        sim_BUSY_IN <= '0';
        wait for 1us;
        sim_BUSY_IN <= '1';
    end process generate_busy;

end sim_read_adc_arch;

模拟(未注释任何过程): Simulation(no process is commented out)

*编辑:更新的VHDL-代码(不必更改测试台):


library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity readFromADC is
    Port
        (
            CLK_IN  :   in  std_logic;
            RESET_IN_N  :   in std_logic;
            BUSY_IN :   in  std_logic;
            DATA_IN :   in  std_logic_vector(7 downto 0);
            ACK_ERROR_IN    :   in std_logic;

            ENABLE_I2C  :   out std_logic;
            ADDR_I2C    :   out std_logic_vector(6 downto 0);
            RW_I2C      :   out std_logic;
            DATA_WR_I2C :   out std_logic_vector(7 downto 0);

            DATA_OUT :  out std_logic_vector(15 downto 0);
            SHIFT_OUT_RDY   :   out std_logic;

            SHOWSTATE : out std_logic_vector (1 downto 0); -- debugging
            BYTECOUNTER: out unsigned (1 downto 0)
        );
end readFromADC;

architecture readFromADC_arch of readFromADC is

    constant const_data_wr    :   std_logic_vector(7 downto 0) := "00000000";
    constant const_rw_I2C :   std_logic := '1';
    constant const_addr_I2C :   std_logic_vector(6 downto 0) := "0101000";
    constant const_da2_control   :   std_logic_vector (3 downto 0) := "0000";

    type states is
        (
            idle,
            read,
            prepareData,
            shiftOut
        );
    signal sign_clk :   std_logic;

    signal sign_HighByte    :   std_logic_vector(7 downto 0);
    signal sign_LowByte    :   std_logic_vector(7 downto 0);

    signal current_state :   states;
    signal next_state :   states;

    signal sign_data_out :  std_logic_vector(15 downto 0);
    signal sign_ena_i2c : std_logic := '0'; 
    signal sign_count_bytes_uns : unsigned (1 downto 0) := "00"; 
    signal prepare_data_rdy :   std_logic := '0';
    signal sign_shift_out_rdy    :   std_logic := '0'; 
    signal debug_states         :   std_logic_vector (1 downto 0);

begin
    --Zuweisungen
    sign_clk <= CLK_IN;   

    ENABLE_I2C <= sign_ena_i2c;
    ADDR_I2C <= const_addr_I2C;
    RW_I2C <= const_rw_I2C;  
    DATA_WR_I2C <= const_data_wr;

    DATA_OUT <= sign_data_out;
    SHIFT_OUT_RDY   <= sign_shift_out_rdy;

    SHOWSTATE <= debug_states;
    BYTECOUNTER <= sign_count_bytes_uns;

    --nächsten Status zuweisen
    change_current_state : process (sign_clk, RESET_IN_N)
    begin
        if rising_edge(sign_clk) then
--            if (RESET_IN_N = '0') then
--                current_state <= idle;
--                sign_shift_out_rdy <= '0';
--                sign_data_out <= (others => '0');
--                sign_count_bytes_uns <= "00";
--            else
            current_state <= next_state;       
--            end if;
        end if;
    end process change_current_state;

    --Status ändern
    change_status : process (current_state)
    begin
      if current_state = idle then
            debug_states <= "00";
            sign_shift_out_rdy <= '0';
            prepare_data_rdy <= '0';
            sign_ena_i2c <= '1';
        elsif current_state = read then
            debug_states <= "01";
            sign_shift_out_rdy <= '0';
        elsif current_state = prepareData then
            debug_states <= "10";
            sign_ena_i2c <= '0';
        elsif current_state = shiftOut then
            debug_states <= "11";
            sign_shift_out_rdy <= '1';
        end if;
    end process change_status;

    acquireData : process (sign_count_bytes_uns, current_state)
    begin
        if current_state = read then
            if (sign_count_bytes_uns = 1) then
                sign_HighByte <= DATA_IN;
            elsif (sign_count_bytes_uns = 2) then
                sign_LowByte <= DATA_IN;
            end if;
        end if;
    end process acquireData;

    gatherData : process (current_state)
    begin
        if current_state = prepareData then
            sign_data_out <= const_da2_control & sign_HighByte(3 downto 0) &  sign_LowByte;
            prepare_data_rdy <= '1';
        end if;
    end process gatherData;

    --Dekodiere den nächsten Status
    next_state_decode: process (current_state, BUSY_IN, ACK_ERROR_IN, sign_count_bytes_uns, prepare_data_rdy, sign_shift_out_rdy)
    begin
        next_state <= current_state;  --Default: behalte den aktuellen Status
        case (current_state) is
            when Idle =>
                if (BUSY_IN = '0') AND (ACK_ERROR_IN = '0') then
                   next_state <= read;
                end if;
             when read =>
                if sign_count_bytes_uns >= 2 then
--                if sign_count_bytes = "11" then
                   next_state <= prepareData;
                end if;
             when prepareData =>
                if prepare_data_rdy = '1' then
                    next_state <= shiftOut;
                end if;
             when shiftOut =>
                if sign_shift_out_rdy = '1' then
                    next_state <= Idle;
                end if;
        end case;      
    end process next_state_decode;

    countBusy : process (BUSY_IN, RESET_IN_N)
    begin
        if falling_edge (RESET_IN_N) then
            sign_count_bytes_uns <= "00";

        elsif falling_edge(BUSY_IN) then
            sign_count_bytes_uns <= sign_count_bytes_uns + 1;  
            if (sign_count_bytes_uns > 2) then
                sign_count_bytes_uns <= "00";
            end if;

        end if;

    end process countBusy;

end readFromADC_arch;

1 个答案:

答案 0 :(得分:0)

首先,在仿真中得到一些“ X”通常意味着将信号同时分配给2个(或更多)值。这通常意味着您需要在多个并行过程中分配此信号。

在VHDL中,最好避免在2个不同的进程中分配信号(请注意,任何进程之外的行都是一个进程)。

在您的代码中,信号 sign_count_bytes_uns 在3个过程中受到影响。我认为您应该至少修改其中两个(通过合并)。

但是,在此过程中,“ X”的真正原因有些棘手:

    change_status : process (current_state)
    begin
      if current_state = idle then
            debug_states <= "00";
            sign_shift_out_rdy <= '0';
            prepare_data_rdy <= '0';
            sign_ena_i2c <= '1';
        elsif current_state = read then
            debug_states <= "01";
            sign_shift_out_rdy <= '0';
        elsif current_state = prepareData then
            debug_states <= "10";
            sign_ena_i2c <= '0';
        elsif current_state = shiftOut then
            sign_count_bytes_uns <= "00";
            debug_states <= "11";
            sign_shift_out_rdy <= '1';
        end if;
    end process change_status;

您仅在1种情况下分配了 sign_count_bytes_uns ,而我假设您不在这种情况下,但是您给我们提供的模拟屏幕截图中, sign_count_bytes_uns 仍为“ XX”。

原因如下: 当您在过程中分配信号但并非在所有情况下都分配信号时,每次您都不在信号受影响的情况下,该信号将采用其先前的值(内存)。综合而言,将推断出一个锁存器。因此,当 countBusy 尝试更改它时,您的进程 change_status 会将 sign_count_bytes_uns 保持为“ 00”,这就是为什么您得到一些“ XX”的原因。