我们训练了两列的XGB模型。总结有文字。 Security_Flag具有0和1。 测试和培训效果很好。 现在,我们要添加一个新句子(不包含在原始文件中)。 只要我们仅使用原始文件中的已知单词,它仍然有效。 但是,如果我们使用一个完整的新词,则会收到一条错误消息。
一切正常-只有最后一行代码会引发错误
请告知 谢谢
我们尝试用不同的方式输入新句子。
import matplotlib.pyplot as plt
from xgboost import plot_tree
import xgboost as xgb
import pandas as pd
import numpy as np
import pickle
import string
import nltk
import csv
import os
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.datasets import dump_svmlight_file
from sklearn.metrics import precision_score
from sklearn.externals import joblib
from sklearn.metrics import confusion_matrix
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
def pp(text):
# tokenize into words
# remove stopwords
stop = stopwords.words('german')
tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]
tokens = [token for token in tokens if token not in stop]
# remove words less than three letters
tokens = [word for word in tokens if len(word) >= 3]
# lower capitalization
tokens = [word.lower() for word in tokens]
# lemmatize
lmtzr = nltk.WordNetLemmatizer()
tokens = [lmtzr.lemmatize(word) for word in tokens]
preprocessed_text= ' '.join(tokens)
return preprocessed_text
df = pd.read_csv("file03.csv", sep=",", usecols=["Security_Flag","Summary"])
y = df["Security_Flag"]
# from dataframe to array for train test splitting
y = y.values
Z = []
for row in df['Summary']:
l = pp(row)
Z.append(l)
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(Z)
X = X.toarray()
#X = pd.DataFrame(data=X[0:,0:])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=41)
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
param = {
'max_depth': 3, # the maximum depth of each tree
'eta': 0.3, # the training step for each iteration
'silent': 1, # logging mode - quiet
'objective': 'multi:softprob', # error evaluation for multiclass training
# 'objective': 'binary:logistic', # error evaluation for multiclass training
'num_class': 2} # the number of classes that exist in this datset
num_round = 20 # the number of training iterations
bst = xgb.train(param, dtrain, num_round)
preds = bst.predict(dtest)
best_preds = np.asarray([np.argmax(line) for line in preds])
stest = xgb.DMatrix([X_test[0]])
spred = bst.predict(stest)
print(confusion_matrix(y_test, best_preds))
while True:
ts = input("Enter a sentence: ")
ts = pp(ts)
Z.append(ts)
Y = vectorizer.fit_transform(Z)
Y = Y.toarray()
test = xgb.DMatrix([Y[-1]])
spred = bst.predict(test)
“预期结果将为一或零。 输出是错误消息。” 训练数据没有以下字段:f1354,f1355,f1352,f1353
答案 0 :(得分:0)
您必须尝试以下操作:
Y = vectorizer.transform(Z)
因为您已经在开始时进行过fit_transform()。