我正在研究Tensorflow模型。在这里,我创建了一个自定义类,用于构建模型。下面是培训代码。
sess = tf.Session(config=session_conf)
with sess.as_default():
model = EntityAttentionLSTM(
sequence_length=train_x.shape[1],
num_classes=train_y.shape[1],
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_size,
pos_vocab_size=len(pos_vocab_processor.vocabulary_),
pos_embedding_size=FLAGS.pos_embedding_size,
hidden_size=FLAGS.hidden_size,
num_heads=FLAGS.num_heads,
attention_size=FLAGS.attention_size,
use_elmo=(FLAGS.embeddings == 'elmo'),
l2_reg_lambda=FLAGS.l2_reg_lambda)
for train_batch in train_batches:
train_bx, train_by, train_btxt, train_be1, train_be2,
train_bp1, train_bp2 = zip(*train_batch)
feed_dict = {
model.input_x: train_bx,
model.input_y: train_by,
model.input_text: train_btxt,
model.input_e1: train_be1,
model.input_e2: train_be2,
model.input_p1: train_bp1,
model.input_p2: train_bp2,
model.emb_dropout_keep_prob:
FLAGS.emb_dropout_keep_prob,
model.rnn_dropout_keep_prob:
FLAGS.rnn_dropout_keep_prob,
model.dropout_keep_prob: FLAGS.dropout_keep_prob
}
_, step, summaries, loss, accuracy = sess.run(
[train_op, global_step, train_summary_op, model.loss, model.accuracy], feed_dict)
train_summary_writer.add_summary(summaries, step)
这一切正常,但是如果我必须加载检查点并恢复模型,那么预测逻辑将如何工作?如何还原一个类的对象?请帮助