此示例内置于SQL Server 2016中,但它也应适用于MySQL 8.X。
我将事件日志数据存储在表fact_user_event_activity
中,其中包含以下示例数据:
event_date_key user_key step_key session_id event_timestamp
20140411 123 1 1000 2014-04-11 08:00:00.000
20140411 123 2 1000 2014-04-11 08:10:00.000
20140411 123 3 1000 2014-04-11 08:20:00.000
20140411 123 4 1000 2014-04-11 08:30:00.000
20140411 125 1 1001 2014-04-11 09:10:00.000
20140411 123 5 1000 2014-04-11 08:31:00.000
20140411 125 2 1001 2014-04-11 09:30:00.000
20140411 125 3 1001 2014-04-11 09:50:00.000 <--
20140411 125 3 1001 2014-04-11 09:51:00.000 <--
20140411 125 4 1001 2014-04-11 09:52:00.000
假设:
125
上查看user_key 2014-04-11 09:10:00.000
。期望
查询以下内容的最有效方法是什么?
user_key session_id step_1_duration_mins step_2_duration_mins step_3_duration_mins step_4_duration_mins
123 1000 10 10 10 1
125 1001 20 20 2 NULL
这将用作累积快照的ETL查询
设置
DROP TABLE IF EXISTS [fact_user_event_activity]
;
CREATE TABLE [fact_user_event_activity] (
[event_date_key] INT DEFAULT NULL,
[user_key] BIGINT NOT NULL,
[step_key] BIGINT NOT NULL,
[session_id] BIGINT NOT NULL,
[event_timestamp] datetime NOT NULL
)
;
INSERT INTO [fact_user_event_activity]
VALUES (20140411, 123, 1, 1000, N'2014-04-11 08:00:00'),
(20140411, 123, 2, 1000, N'2014-04-11 08:10:00'),
(20140411, 123, 3, 1000, N'2014-04-11 08:20:00'),
(20140411, 123, 4, 1000, N'2014-04-11 08:30:00'),
(20140411, 125, 1, 1001, N'2014-04-11 09:10:00'),
(20140411, 123, 5, 1000, N'2014-04-11 08:31:00'),
(20140411, 125, 2, 1001, N'2014-04-11 09:30:00'),
(20140411, 125, 3, 1001, N'2014-04-11 09:50:00'),
(20140411, 125, 3, 1001, N'2014-04-11 09:51:00'),
(20140411, 125, 4, 1001, N'2014-04-11 09:52:00'),
(20140411, 129, 1, 1005, N'2014-04-11 09:08:00'),
(20140411, 129, 2, 1005, N'2014-04-11 09:10:00'),
(20140411, 129, 3, 1005, N'2014-04-11 09:12:00'),
(20140411, 129, 3, 1005, N'2014-04-11 09:13:00'),
(20140411, 129, 4, 1005, N'2014-04-11 09:14:00'),
(20140411, 129, 5, 1005, N'2014-04-11 09:18:00')
;
我的尝试
为了轻松理解代码,我分两个步骤进行了处理:
这返回了我期望的结果,但是我确定我可能会使事情变得过于复杂,这会影响〜500 M记录,因此我想知道是否有更好的方法或是否缺少某些东西
-- Step 1
-- to improve performance, use temp table instead of CTE
-- Use TIMESTAMPDIFF in MySQL instead of DATEDIFF
WITH durations_from_start_tmp AS
(
SELECT session_id, user_key, FIRST_VALUE(fuea.event_timestamp) OVER(PARTITION BY user_key, fuea.session_id ORDER BY fuea.event_timestamp) first_login,
DENSE_RANK() OVER(PARTITION BY user_key, step_key, fuea.session_id ORDER BY fuea.event_timestamp) AS rnk,
CASE WHEN step_key = 2 THEN DATEDIFF(MINUTE, FIRST_VALUE(fuea.event_timestamp) OVER(PARTITION BY user_key, fuea.session_id ORDER BY fuea.event_timestamp), fuea.event_timestamp) END AS step_1_duration_from_start,
CASE WHEN step_key = 3 THEN DATEDIFF(MINUTE, FIRST_VALUE(fuea.event_timestamp) OVER(PARTITION BY user_key, fuea.session_id ORDER BY fuea.event_timestamp), fuea.event_timestamp) END AS step_2_duration_from_start,
CASE WHEN step_key = 4 THEN DATEDIFF(MINUTE, FIRST_VALUE(fuea.event_timestamp) OVER(PARTITION BY user_key, fuea.session_id ORDER BY fuea.event_timestamp), fuea.event_timestamp) END AS step_3_duration_from_start,
CASE WHEN step_key = 5 THEN DATEDIFF(MINUTE, FIRST_VALUE(fuea.event_timestamp) OVER(PARTITION BY user_key, fuea.session_id ORDER BY fuea.event_timestamp), fuea.event_timestamp) END AS step_4_duration_from_start
FROM [fact_user_event_activity] fuea
--WHERE event_timestamp > watermark --for incremental load
)
-- Step 2
SELECT user_key, session_id, SUM(step_1_duration_from_start) AS step_1_duration_mins,
SUM(step_2_duration_from_start) - SUM(step_1_duration_from_start) AS step_2_duration_mins ,
SUM(step_3_duration_from_start) - SUM(step_2_duration_from_start) AS step_3_duration_mins ,
SUM(step_4_duration_from_start) - SUM(step_3_duration_from_start) AS step_4_duration_mins
FROM durations_from_start_tmp
-- deals with repeated steps
WHERE rnk = 1
GROUP BY user_key, session_id
参考
这可能与获取答案无关,只是在您不熟悉数据建模概念的情况下
答案 0 :(得分:1)
因此,您可能会采用的一种方法是添加一个索引(假设您可以添加一个),例如:
CREATE INDEX [SomeIndexName] ON [fact_user_event_activity] (user_key, session_id, step_key, event_timestamp);
(或者,如果您担心500m行的索引大小,则可以在step_key和event_timestamp上进行包含)。
然后使用窗口函数跳过查询,如下所示:
SELECT user_key,
session_id,
step_1_duration = DATEDIFF(MINUTE, step_1_timestamp, step_2_timestamp),
step_2_duration = DATEDIFF(MINUTE, step_2_timestamp, step_3_timestamp),
step_3_duration = DATEDIFF(MINUTE, step_3_timestamp, step_4_timestamp),
step_4_duration = DATEDIFF(MINUTE, step_4_timestamp, step_5_timestamp)
FROM
(
SELECT user_key, session_id,
step_1_timestamp = MIN(CASE WHEN step_key = 1 THEN event_timestamp END),
step_2_timestamp = MIN(CASE WHEN step_key = 2 THEN event_timestamp END),
step_3_timestamp = MIN(CASE WHEN step_key = 3 THEN event_timestamp END),
step_4_timestamp = MIN(CASE WHEN step_key = 4 THEN event_timestamp END),
step_5_timestamp = MIN(CASE WHEN step_key = 5 THEN event_timestamp END)
FROM fact_user_event_activity
GROUP BY user_key, session_id
) AS T;
(理论上,这将只进行索引扫描而不需要任何种类。)