时间:2019-06-25 14:30:52

标签: tensorflow

我想使用CW算法训练一些对抗性示例,我使用了here中的示例和here中的CW实现。但是我遇到关于tf.zeros_initializer的错误:

ValueError: The initializer passed is not valid. It should be a callable with no arguments and the shape should not be provided or an instance of 
'tf.keras.initializers.*' and `shape` should be fully defined.

编辑:似乎未完全定义的形状与使用初始化程序冲突。我该如何解决?


这是一段代码:

# ... omitted
with tf.variable_scope('model', reuse=tf.AUTO_REUSE):
    # CW
    _, env.adv_cw, _ = cw.cw(model, env.x)

这里是env.x

env.x = tf.placeholder(tf.float32, (None, width, height, channels), name='x')

运行代码时,出现错误消息:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-39-712c8b007d37> in <module>()
      8 with tf.variable_scope('model', reuse=tf.AUTO_REUSE):
      9     # CW
---> 10     _, env.adv_cw, _ = cw.cw(model, env.x)

5 frames
/content/cw.py in cw(model, x, y, eps, ord_, T, optimizer, alpha, min_prob, clip)
     50     """
     51     xshape = x.get_shape().as_list()
---> 52     noise = tf.get_variable('noise', shape=xshape, dtype=tf.float32,
     53                             initializer=tf.zeros_initializer)
     54 

/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/variable_scope.py in get_variable(name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter, constraint, synchronization, aggregation)
   1494       constraint=constraint,
   1495       synchronization=synchronization,
-> 1496       aggregation=aggregation)
   1497 
   1498 

/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/variable_scope.py in get_variable(self, var_store, name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter, constraint, synchronization, aggregation)
   1237           constraint=constraint,
   1238           synchronization=synchronization,
-> 1239           aggregation=aggregation)
   1240 
   1241   def _get_partitioned_variable(self,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/variable_scope.py in get_variable(self, name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter, constraint, synchronization, aggregation)
    560           constraint=constraint,
    561           synchronization=synchronization,
--> 562           aggregation=aggregation)
    563 
    564   def _get_partitioned_variable(self,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/variable_scope.py in _true_getter(name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource, constraint, synchronization, aggregation)
    512           constraint=constraint,
    513           synchronization=synchronization,
--> 514           aggregation=aggregation)
    515 
    516     synchronization, aggregation, trainable = (

/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/variable_scope.py in _get_single_variable(self, name, shape, dtype, initializer, regularizer, partition_info, reuse, trainable, collections, caching_device, validate_shape, use_resource, constraint, synchronization, aggregation)
    906           variable_dtype = None
    907         else:
--> 908           raise ValueError("The initializer passed is not valid. It should "
    909                            "be a callable with no arguments and the "
    910                            "shape should not be provided or an instance of "

ValueError: The initializer passed is not valid. It should be a callable with no arguments and the shape should not be provided or an instance of `tf.keras.initializers.*' and `shape` should be fully defined.

但是Google的TensorFlow Guide给出了get_variable用法的示例:

my_int_variable = tf.get_variable("my_int_variable", [1, 2, 3], dtype=tf.int32,
  initializer=tf.zeros_initializer)

环境:Google Colab,TensorFlow 1.14.0-rc1,Python 3.6

1 个答案:

答案 0 :(得分:-1)

只需根据您的占位符维度进行更改,让我以您的占位符变量为例。

** x = placeholder(t f. float 32, (None, width, height, channels), name='x')**.

它具有4个维度:[无,宽度,高度,通道],但是未定义宽度,高度,通道,这意味着对于图像宽度= 6,高度= 6,通道= 3定义了张量尺寸是[6 x 6 x 3]。

您可以做的是,读取图像,将所有三个维度的值获取到不同的变量中,并将其传递给占位符变量。 例如     Image A = 32 x 32 x 3 width = A.shape[0] height = A.shape[1] channels =A.shape[2]

或者您可以通过这种方式直接将宽度,高度,通道的值(如果您知道输入数据的形状)提供给占位符。