commons-math3库和ojalgo库之间的SVD差异解决方案非常高。是否有任何方法可以根据任何输入参数来减少差异。
double[][] olsColumns = { { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 },
{ 1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, 1.0 } };
double[] observationVector = { 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
//Ojalgo
final PrimitiveDenseStore tmpOriginal = PrimitiveDenseStore.FACTORY.rows(olsColumns);
SingularValue<Double> tmpSVD = SingularValue.make(tmpOriginal);
tmpSVD.decompose(tmpOriginal);
double[] singularValues = tmpSVD.getSingularValues().toRawCopy1D();
double[][] V = tmpSVD.getQ2().toRawCopy2D();
System.out.println("V" + Arrays.deepToString(V));
System.out.println("Singular values" + Arrays.toString(singularValues));
try {
// MatrixStore<Double> doubleMat = tmpSVD.solve(tmpOriginal,
// PrimitiveDenseStore.FACTORY.column(Utils.prepareObservationVector()));
MatrixStore<Double> solution = tmpSVD.getSolution(PrimitiveDenseStore.FACTORY.column(observationVector),
tmpSVD.preallocate(tmpOriginal));
System.out.println("Solution " + Arrays.toString(solution.toRawCopy1D()));
} catch (Exception e) {
e.printStackTrace();
}
//Commons-Math3
RealMatrix newPredM = new Array2DRowRealMatrix(olsColumns);
SingularValueDecomposition svd = new SingularValueDecomposition(newPredM);
// RealMatrix covariance = svd.getCovariance(0);
// System.out.println("covariance"+Arrays.deepToString(covariance.getData()));
System.out.println("V" + Arrays.deepToString(svd.getV().getData()));
System.out.println("Singular values" + Arrays.toString(svd.getSingularValues()));
double[] solution = svd.getSolver().solve(new ArrayRealVector(observationVector)).toArray();
System.out.println("Solution" + Arrays.toString(solution));
Math3通用解决方案:[0.01612903225806451, 0.016129032258064502]
OjAlgo解决方案解决方案:[7.614155324982286E13, -7.614155324982295E13]
答案 0 :(得分:0)
您正在使用哪个版本的ojAlgo?
当我尝试该代码时,出现异常,因为您提供给tmpSVD.getSolution(...)方法的“预分配”矩阵的大小/形状错误。如果您只是删除第二个参数,分配将为您完成,代码将起作用。我得到这个结果:
V[[0.707106781186548, -0.707106781186547], [0.707106781186547, 0.707106781186548]]
Singular values[13.638181696985853, 9.035878689445474E-15]
Solution [0.016129032258064484, 0.01612903225806446]