如何在同一python文件中加载两个tensorflow冻结模型

时间:2019-06-25 05:02:42

标签: tensorflow

我训练了两个tf模型,第一个是检测车牌,第二个是识别被检测车牌的号码。现在,我想将它们组合到同一个python文件中。

我曾尝试将两个模型一起加载到python文件中,但是有一些错误,这是与使用单一识别模型相比,识别结果确实很糟糕,我想原因是两个加载方法不正确冻结图,那么有谁能告诉我如何正确加载两个冻结图。

代码:

PATH_TO_FROZEN_GRAPH ='assets/plate_model/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for eachbox.
PATH_TO_LABELS = 'assets/plate_model/label.pbtxt'

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
detection_graph = tf.Graph().as_default()
od_graph_def = tf.GraphDef()
fid= tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb')
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='detection')
sess1 = tf.Session(graph=detection_graph)###detection graph
from recognition_v2 import run,recognition
sess=run()###recognition graph
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
    'num_detections', 'detection_boxes', 'detection_scores',
    'detection_classes', 'detection_masks'
]:
  tensor_name = key + ':0'
  if tensor_name in all_tensor_names:
    tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
        tensor_name)
if 'detection_masks' in tensor_dict:
  # The following processing is only for single image
  detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
  detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
  # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
  real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
  detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
  detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
  detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
      detection_masks, detection_boxes, image.shape[0], image.shape[1])
  detection_masks_reframed = tf.cast(
      tf.greater(detection_masks_reframed, 0.5), tf.uint8)
  # Follow the convention by adding back the batch dimension
  tensor_dict['detection_masks'] = tf.expand_dims(
      detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

n=0
for i in [1]:
  cam = cv2.VideoCapture(f'../../input/ferry_{i}.mp4')
  # cam.set(cv2.CAP_PROP_FRAME_WIDTH,1920)
  # cam.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)

  width = int(cam.get(cv2.CAP_PROP_FRAME_WIDTH))
  height = int(cam.get(cv2.CAP_PROP_FRAME_HEIGHT))
  fps = cam.get(cv2.CAP_PROP_FPS)

  fps_time = 0
  count = 0
  has_plate_cnt=0

  cc=0
  fps1 = cam.get(cv2.CAP_PROP_FPS)
  while True:

    success, image = cam.read()
    cc+=1
    if not success:
      break

    image_h = image.shape[0]
    image_w = image.shape[1]

    count += 1
    if has_plate_cnt > 0:
      has_plate_cnt -= 1
    # print(count)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
  #   image = cv2.flip(image, 1)
    # Run inference
    output_dict = sess1.run(tensor_dict,
                            feed_dict={image_tensor: np.expand_dims(image, 0)})
    # all outputs are float32 numpy arrays, so convert types as appropriate
    output_dict['num_detections'] = int(output_dict['num_detections'][0])
    output_dict['detection_classes'] = output_dict[
        'detection_classes'][0].astype(np.uint8)
    output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
    output_dict['detection_scores'] = output_dict['detection_scores'][0]
    if 'detection_masks' in output_dict:
      output_dict['detection_masks'] = output_dict['detection_masks'][0]

    plates = []
    p_chars = []
    for i, score in enumerate(output_dict['detection_scores']):
      if score > 0.8:
        char_name = category_index[output_dict['detection_classes'][i]]['name']
        ymin, xmin, ymax, xmax = tuple(output_dict['detection_boxes'][i].tolist())
        ymin = int(ymin * image_h)
        xmin = int(xmin * image_w)
        ymax = int(ymax * image_h)
        xmax = int(xmax * image_w)
        cv2.rectangle(image,(xmin,ymin-1),(xmax,ymax+2),(0,255,0),2)
        if char_name == 'plate':
          plates.append([ymin, xmin, ymax, xmax])
          p_chars.append([])
          if has_plate_cnt == 0:
            plate_image = cv2.cvtColor(image[ymin-1:ymax+2,xmin:xmax], cv2.COLOR_BGR2RGB)
            # shutil.rmtree(f'../../output/data/')
            # os.mkdir(f'../../output/data/')
            # cv2.imwrite(f'../../output/data/{init_time}{int(27+cc//fps1)}.jpg', plate_image)
            cv2.imwrite(f'../../output/data/1.jpg', plate_image)
            plate_image=cv2.imread(f'../../output/data/1.jpg')

            recognition(sess,plate_image)########recognition

0 个答案:

没有答案