如何使用sklearn管道跟踪catboost的类别索引

时间:2019-06-24 18:58:57

标签: python scikit-learn catboost

我想跟踪sklearn管道中的分类特征索引,以便将其提供给CatBoostClassifier。

我将从管道的fit()之前的一组分类功能开始。 管道本身会在特征选择步骤中更改数据的结构并删除特征。

我如何预先知道将在管道中删除或添加哪些分类功能? 调用fit()方法时,我需要了解更新的列表索引。 问题是,转换后我的数据集可能会更改。

这是我的数据框示例:

data = pd.DataFrame({'pet':      ['cat', 'dog', 'dog', 'fish', np.nan, 'dog', 'cat', 'fish'],
                     'children': [4., 6, 3, np.nan, 2, 3, 5, 4],
                     'salary':   [90., 24, np.nan, 27, 32, 59, 36, 27],
                     'gender':   ['male', 'male', 'male', 'male', 'male', 'male', 'male', 'male'],
                     'happy':    [0, 1, 1, 0, 1, 1, 0, 0]})

categorical_features = ['pet', 'gender']
numerical_features = ['children', 'salary']
target = 'happy'

print(data)

     pet    children    salary  gender  happy
0    cat    4.0         90.0    male    0
1    dog    6.0         24.0    male    1
2    dog    3.0         NaN     male    1
3    fish   NaN         27.0    male    0
4    NaN    2.0         32.0    male    1
5    dog    3.0         59.0    male    1
6    cat    5.0         36.0    male    0
7    fish   4.0         27.0    male    0

现在,我想运行一个包含多个步骤的管道。 这些步骤之一是VarianceThreshold(),在我的情况下,它将导致从数据帧中删除“性别”。

X, y = data.drop(columns=[target]), data[target]

pipeline = Pipeline(steps=[
    (
        'preprocessing',
        ColumnTransformer(transformers=[
            (
                'categoricals',
                Pipeline(steps=[
                    ('fillna_with_frequent', SimpleImputer(strategy='most_frequent')),
                    ('ordinal_encoder', OrdinalEncoder())
                ]),
                categorical_features
            ),
            (
                'numericals',
                Pipeline(steps=[
                    ('fillna_with_mean', SimpleImputer(strategy='mean'))
                ]),
                numerical_features
            )
        ])
    ),
    (
        'feature_selection',
        VarianceThreshold()
    ),
    (
        'estimator',
        CatBoostClassifier()
    )
])

现在,当我尝试获取CatBoost的分类特征索引列表时,我无法确定“性别”已不再是我的数据框的一部分。

cat_features = [data.columns.get_loc(col) for col in categorical_features]
print(cat_features)
[0, 3]

索引0、3是错误的,因为在VarianceThreshold之后,特征3(性别)将被删除。

pipeline.fit(X, y, estimator__cat_features=cat_features)
---------------------------------------------------------------------------
CatBoostError                             Traceback (most recent call last)
<ipython-input-230-527766a70b4d> in <module>
----> 1 pipeline.fit(X, y, estimator__cat_features=cat_features)

~/anaconda3/lib/python3.7/site-packages/sklearn/pipeline.py in fit(self, X, y, **fit_params)
    265         Xt, fit_params = self._fit(X, y, **fit_params)
    266         if self._final_estimator is not None:
--> 267             self._final_estimator.fit(Xt, y, **fit_params)
    268         return self
    269 

~/anaconda3/lib/python3.7/site-packages/catboost/core.py in fit(self, X, y, cat_features, sample_weight, baseline, use_best_model, eval_set, verbose, logging_level, plot, column_description, verbose_eval, metric_period, silent, early_stopping_rounds, save_snapshot, snapshot_file, snapshot_interval, init_model)
   2801         self._fit(X, y, cat_features, None, sample_weight, None, None, None, None, baseline, use_best_model,
   2802                   eval_set, verbose, logging_level, plot, column_description, verbose_eval, metric_period,
-> 2803                   silent, early_stopping_rounds, save_snapshot, snapshot_file, snapshot_interval, init_model)
   2804         return self
   2805 

~/anaconda3/lib/python3.7/site-packages/catboost/core.py in _fit(self, X, y, cat_features, pairs, sample_weight, group_id, group_weight, subgroup_id, pairs_weight, baseline, use_best_model, eval_set, verbose, logging_level, plot, column_description, verbose_eval, metric_period, silent, early_stopping_rounds, save_snapshot, snapshot_file, snapshot_interval, init_model)
   1231         _check_train_params(params)
   1232 
-> 1233         train_pool = _build_train_pool(X, y, cat_features, pairs, sample_weight, group_id, group_weight, subgroup_id, pairs_weight, baseline, column_description)
   1234         if train_pool.is_empty_:
   1235             raise CatBoostError("X is empty.")

~/anaconda3/lib/python3.7/site-packages/catboost/core.py in _build_train_pool(X, y, cat_features, pairs, sample_weight, group_id, group_weight, subgroup_id, pairs_weight, baseline, column_description)
    689             raise CatBoostError("y has not initialized in fit(): X is not catboost.Pool object, y must be not None in fit().")
    690         train_pool = Pool(X, y, cat_features=cat_features, pairs=pairs, weight=sample_weight, group_id=group_id,
--> 691                           group_weight=group_weight, subgroup_id=subgroup_id, pairs_weight=pairs_weight, baseline=baseline)
    692     return train_pool
    693 

~/anaconda3/lib/python3.7/site-packages/catboost/core.py in __init__(self, data, label, cat_features, column_description, pairs, delimiter, has_header, weight, group_id, group_weight, subgroup_id, pairs_weight, baseline, feature_names, thread_count)
    318                         )
    319 
--> 320                 self._init(data, label, cat_features, pairs, weight, group_id, group_weight, subgroup_id, pairs_weight, baseline, feature_names)
    321         super(Pool, self).__init__()
    322 

~/anaconda3/lib/python3.7/site-packages/catboost/core.py in _init(self, data, label, cat_features, pairs, weight, group_id, group_weight, subgroup_id, pairs_weight, baseline, feature_names)
    638             cat_features = _get_cat_features_indices(cat_features, feature_names)
    639             self._check_cf_type(cat_features)
--> 640             self._check_cf_value(cat_features, features_count)
    641         if pairs is not None:
    642             self._check_pairs_type(pairs)

~/anaconda3/lib/python3.7/site-packages/catboost/core.py in _check_cf_value(self, cat_features, features_count)
    360                 raise CatBoostError("Invalid cat_features[{}] = {} value type={}: must be int().".format(indx, feature, type(feature)))
    361             if feature >= features_count:
--> 362                 raise CatBoostError("Invalid cat_features[{}] = {} value: must be < {}.".format(indx, feature, features_count))
    363 
    364     def _check_pairs_type(self, pairs):

CatBoostError: Invalid cat_features[1] = 3 value: must be < 3.

我希望cat_features为[0],但实际输出为[0,3]。

4 个答案:

答案 0 :(得分:0)

您可以尝试将cat_features传递给CatBoostClassifier初始化函数。

答案 1 :(得分:0)

问题不是catboost的问题,而是ColumnTransformer的工作方式。 columnTransfomer按转换操作的顺序

重建输入的df转换后

答案 2 :(得分:0)

这里的潜在问题是转换器没有遵循预定义的输出模式,这意味着您可以将1列转换为3(分类列)。

因此,您需要跟踪自己生成的功能数量。

我对此的解决方案是以一种方式来组织管道,这样我可以预先知道哪些索引对应于最后一步的类别列(Catboost估计器)。通常,我会将所有与类别相关的操作隔离并包装在一个转换器中(您也可以在其中进行子转换),并且要跟踪它将输出多少列。至关重要的将此变压器设置为管道中的 first 变压器。这将确保我的第一个X索引是分类的,并且我可以将此索引列表传递到最后的catboost cat_features参数。

答案 3 :(得分:0)

您收到错误的原因是您当前的 cat_features 来自您的 non_transformed 数据集。为了解决这个问题,您必须在转换数据集后导出 cat_features。 这就是我跟踪我的方式:我将转换器拟合到数据集,检索数据集并将其转换为熊猫数据框,然后检索分类索引

column_transform = ColumnTransformer([('n', MinMaxScaler(), numerical_idx)], remainder='passthrough')
scaled_X = column_transform.fit_transform(X)
new_df = pd.DataFrame(scaled_X)
new_df = new_df.infer_objects() # converts the datatype to their most accurate datatype
cat_features_new = [new_df.columns.get_loc(col) for col in new_df.select_dtypes(include=['object', 'bool']).columns]