PySpark-具有lambda函数的地图

时间:2019-06-24 14:45:57

标签: python pandas apache-spark lambda pyspark

在Spark环境中混合使用python map和lambda函数时,我遇到了一个问题。

给出df1,我的源数据框:

Animals     | Food      | Home
----------------------------------
Monkey      | Banana    | Jungle
Dog         | Meat      | Garden
Cat         | Fish      | House
Elephant    | Banana    | Jungle
Lion        | Meat      | Desert

我想创建另一个数据框df2。它将包含两列,每列df1(在我的示例中为3)。 第一列将包含df1列的名称。第二列将包含出现次数最多的元素数组(在下面的示例中,n = 3)和计数。

Column      | Content
-----------------------------------------------------------
Animals     | [("Cat", 1), ("Dog", 1), ("Elephant", 1)]
Food        | [("Banana", 2), ("Meat", 2), ("Fish", 1)]
Home        | [("Jungle", 2), ("Desert", 1), ("Garden", 1)]

我尝试使用python list,map和lambda函数来实现,但与PySpark函数有冲突:

def transform(df1):
    # Number of entry to keep per row
    n = 3
    # Add a column for the count of occurence
    df1 = df1.withColumn("future_occurences", F.lit(1))

    df2 = df1.withColumn("Content",
        F.array(
            F.create_map(
                lambda x: (x,
                    [
                        str(row[x]) for row in df1.groupBy(x).agg(
                            F.sum("future_occurences").alias("occurences")
                        ).orderBy(
                            F.desc("occurences")
                        ).select(x).limit(n).collect()
                    ]
                ), df1.columns
            )
        )
    )
    return df2

错误是:

TypeError: Invalid argument, not a string or column: <function <lambda> at 0x7fc844430410> of type <type 'function'>. For column literals, use 'lit', 'array', 'struct' or 'create_map' function.

有什么想法要解决吗?

非常感谢!

1 个答案:

答案 0 :(得分:2)

这是一个可能的解决方案,其中Content列将是StructType的数组,其中包含两个命名字段:Contentcount

from pyspark.sql.functions import col, collect_list, desc, lit, struct
from functools import reduce 

def transform(df, n):
    return reduce(
        lambda a, b: a.unionAll(b),
        (
            df.groupBy(c).count()\
                .orderBy(desc("count"), c)\
                .limit(n)\
                .withColumn("Column", lit(c))\
                .groupBy("Column")\
                .agg(
                    collect_list(
                        struct(
                            col(c).cast("string").alias("Content"), 
                            "count")
                    ).alias("Content")
                )
            for c in df.columns
        )
    )

此函数将遍历输入DataFrame df中的每一列,并计算每个值的出现。然后,我们orderBy的计数(降序)及其自身的列值(按字母顺序)并仅保留前n行(limit(n))。

接下来,将这些值收集到一个结构数组中,最后union一起将每一列的结果组合在一起。由于union要求每个DataFrame具有相同的架构,因此您需要将列值转换为字符串。

n = 3
df1 = transform(df, n)
df1.show(truncate=False)
#+-------+------------------------------------+
#|Column |Content                             |
#+-------+------------------------------------+
#|Animals|[[Cat,1], [Dog,1], [Elephant,1]]    |
#|Food   |[[Banana,2], [Meat,2], [Fish,1]]    |
#|Home   |[[Jungle,2], [Desert,1], [Garden,1]]|
#+-------+------------------------------------+

这与您要求的输出不完全相同,但可能足以满足您的需求。 (Spark没有您所描述的元组。)这是新的模式:

df1.printSchema()
#root
# |-- Column: string (nullable = false)
# |-- Content: array (nullable = true)
# |    |-- element: struct (containsNull = true)
# |    |    |-- Content: string (nullable = true)
# |    |    |-- count: long (nullable = false)