我有8个输入和1个输出的分类问题。我创建以下模型:
const hidden = tf.layers.dense({
units: 8,
inputShape: [58, 8, 8],
activation: 'sigmoid'
});
const output = tf.layers.dense({
units: 1,
activation: 'softmax'
});
var model = tf.sequential({
layers: [
hidden,
output
]
});
现在我预测
const prediction = model.predict(inputTensor);
prediction.print();
我希望此预测有1个输出值,但我会得到更多,这是如何工作的?
这些是形状
console.log(input.shape) // [1, 58, 8, 8]
console.log(prediction.shape) // [1, 58, 8, 1]
输出看起来像这样:
[[[[0.8124214],
[0.8544047],
[0.6427221],
[0.5753598],
[0.5 ],
[0.5 ],
[0.5 ],
[0.5 ]],
[[0.7638108],
[0.642349 ],
[0.5315424],
[0.6282103],
[0.5 ],
[0.5 ],
[0.5 ],
[0.5 ]],
... 58 of these
答案 0 :(得分:0)
input.shape
[1、58、8、8]对应于以下内容:
与output.shape
[1,58、8、8]类似,对应于以下内容:
如果仅期望单位值,即一层[1,1]形状,则可以使用tf.layers.flatten()
删除内部尺寸。
const model = tf.sequential();
model.add(tf.layers.dense({units: 4, inputShape: [58, 8, 8]}));
model.add(tf.layers.flatten())
model.add(tf.layers.dense({units: 1}));
model.compile({optimizer: 'sgd', loss: 'meanSquaredError'});
model.fit(tf.randomNormal([1, 58, 8, 8]), tf.randomNormal([1, 1]))
model.predict(tf.randomNormal([1, 58, 8, 8])).print()
// Inspect the inferred shape of the model's output, which equals
// `[null, 1]`. The 1st dimension is the undetermined batch dimension; the
// 2nd is the output size of the model's last layer.
console.log(JSON.stringify(model.outputs[0].shape));
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.1.2/dist/tf.min.js"></script>