tensorflow-gpu将不使用GPU

时间:2019-06-23 12:56:16

标签: python tensorflow keras cudnn

我正试图让Keras CNN在GPU上运行,但不会,而且我不知道怎么做。

nvidia-smi的输出:

Sat Jun 22 22:28:01 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.116                Driver Version: 390.116                   |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|   0  GeForce GT 755M     Off  | 00000000:01:00.0 N/A |                  N/A |
| N/A   79C    P0    N/A /  N/A |    179MiB /  1991MiB |     N/A      Default |
+-------------------------------+----------------------+----------------------+
|   1  GeForce GT 755M     Off  | 00000000:07:00.0 N/A |                  N/A |
| N/A   64C    P0    N/A /  N/A |      2MiB /  1999MiB |     N/A      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0                    Not Supported                                       |
|    1                    Not Supported                                       |
+-----------------------------------------------------------------------------+

我使用的是运行python3的脚本,以查看tf运行的设备:

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

我从中得到的输出:

2019-06-22 21:17:07.250488: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-06-22 21:17:07.269140: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.1
2019-06-22 21:17:07.327260: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-06-22 21:17:07.328750: I tensorflow/compiler/xla/service/platform_util.cc:197] StreamExecutor cuda device (0) is of insufficient compute capability: 3.5 required, device is 3.0
2019-06-22 21:17:07.329374: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-06-22 21:17:07.330012: I tensorflow/compiler/xla/service/platform_util.cc:197] StreamExecutor cuda device (1) is of insufficient compute capability: 3.5 required, device is 3.0
2019-06-22 21:17:07.330278: F tensorflow/stream_executor/lib/statusor.cc:34] Attempting to fetch value instead of handling error Internal: no supported devices found for platform CUDA
Aborted (core dumped)

据此,我了解到我可能未使用正确的CUDA版本,因为我的GPU(GeForce 755M)具有3.0计算能力,并且由于需要3.5,因此某些地方必须不兼容。 在NVIDIA网站上,我读到我需要CUDA 9.0才能与3.0计算功能兼容,但是我的CUDA是9.0。 nvcc -V的输出:

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176

这是什么问题,如何解决,以便tensorflow将在GPU上运行?

0 个答案:

没有答案