有人可以告诉我这段代码我做错了什么吗?无论如何,它只是打印'计数'。我只想要一个非常简单的素数发生器(没什么特别的)。
import math
def main():
count = 3
one = 1
while one == 1:
for x in range(2, int(math.sqrt(count) + 1)):
if count % x == 0:
continue
if count % x != 0:
print count
count += 1
答案 0 :(得分:142)
存在一些问题:
continue
转到下一个循环迭代 - 但你真的想用break
这是你的代码,有一些修复,它只打印出素数:
import math
def main():
count = 3
while True:
isprime = True
for x in range(2, int(math.sqrt(count) + 1)):
if count % x == 0:
isprime = False
break
if isprime:
print count
count += 1
对于更高效的素数生成,请参阅其他人建议的Erastothenes筛选。这是一个很好的,优化的实现,有很多注释:
# Sieve of Eratosthenes
# Code by David Eppstein, UC Irvine, 28 Feb 2002
# http://code.activestate.com/recipes/117119/
def gen_primes():
""" Generate an infinite sequence of prime numbers.
"""
# Maps composites to primes witnessing their compositeness.
# This is memory efficient, as the sieve is not "run forward"
# indefinitely, but only as long as required by the current
# number being tested.
#
D = {}
# The running integer that's checked for primeness
q = 2
while True:
if q not in D:
# q is a new prime.
# Yield it and mark its first multiple that isn't
# already marked in previous iterations
#
yield q
D[q * q] = [q]
else:
# q is composite. D[q] is the list of primes that
# divide it. Since we've reached q, we no longer
# need it in the map, but we'll mark the next
# multiples of its witnesses to prepare for larger
# numbers
#
for p in D[q]:
D.setdefault(p + q, []).append(p)
del D[q]
q += 1
请注意,它会返回一个生成器。
答案 1 :(得分:12)
def is_prime(num):
"""Returns True if the number is prime
else False."""
if num == 0 or num == 1:
return False
for x in range(2, num):
if num % x == 0:
return False
else:
return True
>> filter(is_prime, range(1, 20))
[2, 3, 5, 7, 11, 13, 17, 19]
我们将在列表中获得最多20个素数。 我本来可以用过Eratosthenes的Sieve,但是你说 你想要一些非常简单的东西;)
答案 2 :(得分:7)
重要的是:
import re
def isprime(n):
return re.compile(r'^1?$|^(11+)\1+$').match('1' * n) is None
print [x for x in range(100) if isprime(x)]
###########Output#############
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
答案 3 :(得分:7)
print [x for x in range(2,100) if not [t for t in range(2,x) if not x%t]]
答案 4 :(得分:4)
def primes(n): # simple Sieve of Eratosthenes
odds = range(3, n+1, 2)
sieve = set(sum([range(q*q, n+1, q+q) for q in odds],[]))
return [2] + [p for p in odds if p not in sieve]
>>> primes(50)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
测试一个数字是否为素数:
>>> 541 in primes(541)
True
>>> 543 in primes(543)
False
答案 5 :(得分:3)
这是一个简单(Python 2.6.2)解决方案......它符合OP的原始请求(现在已有六个月的历史);并且应该是任何“编程101”课程中完全可以接受的解决方案......因此这篇文章。
import math
def isPrime(n):
for i in range(2, int(math.sqrt(n)+1)):
if n % i == 0:
return False;
return n>1;
print 2
for n in range(3, 50):
if isPrime(n):
print n
这种简单的“蛮力”方法对于现代PC上的数字大约为16,000的数字来说“足够快”(在我的2GHz机箱上大约需要8秒)。
显然,这可以通过不重新计算每个偶数的素数,或每个数字的3,5,7等的每个倍数来更有效地完成...参见Sieve of Eratosthenes(见如果你感到特别勇敢和/或疯狂,那么eliben在上面的实现,甚至是Sieve of Atkin。
警告:我是一个蟒蛇诺布。请不要把我说的任何东西当作福音。答案 6 :(得分:2)
python 3(生成素数)
import math
i = 2
while True:
for x in range(2, int(math.sqrt(i) + 1)):
if i%x==0:
break
else:
print(i)
i += 1
答案 7 :(得分:2)
我认为最好采用功能性方法,
所以我首先创建一个函数,以确定数字是否为素数,然后根据需要在循环或其他位置使用它。
def isprime(n):
for x in range(2,n):
if n%x == 0:
return False
return True
然后运行一个简单的列表推导或生成器表达式来获取素数列表
[x for x in range(1,100) if isprime(x)]
答案 8 :(得分:1)
这似乎是作业,所以我会给出一个提示而不是详细解释。如果我认为错了,请纠正我。
当你看到一个均衡的除数时,你做得很好。
但是,只要你看到一个号码并不分成它,你就会打印'计数'。例如,2不能均匀地划分为9.但这并不能使9成为素数。您可能希望继续前进,直到您确定范围匹配中的否号码。
(正如其他人所回答的那样,Sieve是一种更有效的方式......只是试图帮助你理解为什么这个特定代码没有做你想做的事情)
答案 9 :(得分:1)
仅研究了该主题,在线程中查找示例并尝试制作我的版本:
from collections import defaultdict
# from pprint import pprint
import re
def gen_primes(limit=None):
"""Sieve of Eratosthenes"""
not_prime = defaultdict(list)
num = 2
while limit is None or num <= limit:
if num in not_prime:
for prime in not_prime[num]:
not_prime[prime + num].append(prime)
del not_prime[num]
else: # Prime number
yield num
not_prime[num * num] = [num]
# It's amazing to debug it this way:
# pprint([num, dict(not_prime)], width=1)
# input()
num += 1
def is_prime(num):
"""Check if number is prime based on Sieve of Eratosthenes"""
return num > 1 and list(gen_primes(limit=num)).pop() == num
def oneliner_is_prime(num):
"""Simple check if number is prime"""
return num > 1 and not any([num % x == 0 for x in range(2, num)])
def regex_is_prime(num):
return re.compile(r'^1?$|^(11+)\1+$').match('1' * num) is None
def simple_is_prime(num):
"""Simple check if number is prime
More efficient than oneliner_is_prime as it breaks the loop
"""
for x in range(2, num):
if num % x == 0:
return False
return num > 1
def simple_gen_primes(limit=None):
"""Prime number generator based on simple gen"""
num = 2
while limit is None or num <= limit:
if simple_is_prime(num):
yield num
num += 1
if __name__ == "__main__":
less1000primes = list(gen_primes(limit=1000))
assert less1000primes == list(simple_gen_primes(limit=1000))
for num in range(1000):
assert (
(num in less1000primes)
== is_prime(num)
== oneliner_is_prime(num)
== regex_is_prime(num)
== simple_is_prime(num)
)
print("Primes less than 1000:")
print(less1000primes)
from timeit import timeit
print("\nTimeit:")
print(
"gen_primes:",
timeit(
"list(gen_primes(limit=1000))",
setup="from __main__ import gen_primes",
number=1000,
),
)
print(
"simple_gen_primes:",
timeit(
"list(simple_gen_primes(limit=1000))",
setup="from __main__ import simple_gen_primes",
number=1000,
),
)
print(
"is_prime:",
timeit(
"[is_prime(num) for num in range(2, 1000)]",
setup="from __main__ import is_prime",
number=100,
),
)
print(
"oneliner_is_prime:",
timeit(
"[oneliner_is_prime(num) for num in range(2, 1000)]",
setup="from __main__ import oneliner_is_prime",
number=100,
),
)
print(
"regex_is_prime:",
timeit(
"[regex_is_prime(num) for num in range(2, 1000)]",
setup="from __main__ import regex_is_prime",
number=100,
),
)
print(
"simple_is_prime:",
timeit(
"[simple_is_prime(num) for num in range(2, 1000)]",
setup="from __main__ import simple_is_prime",
number=100,
),
)
运行此代码的结果显示出有趣的结果:
$ python prime_time.py
Primes less than 1000:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]
Timeit:
gen_primes: 0.6738066330144648
simple_gen_primes: 4.738092333020177
is_prime: 31.83770858097705
oneliner_is_prime: 3.3708438930043485
regex_is_prime: 8.692703998007346
simple_is_prime: 0.4686249239894096
因此,我可以看到我们对不同的问题有正确的答案;对于质数生成器gen_primes
来说似乎是正确的答案;但是对于素数检查,simple_is_prime
函数更合适。
这可行,但是我总是乐于尝试更好的方法来实现is_prime
功能。
答案 10 :(得分:1)
这是我的实现。我确定有一种更有效的方法,但似乎可以工作。基本标志使用。
def genPrime():
num = 1
prime = False
while True:
# Loop through all numbers up to num
for i in range(2, num+1):
# Check if num has remainder after the modulo of any previous numbers
if num % i == 0:
prime = False
# Num is only prime if no remainder and i is num
if i == num:
prime = True
break
if prime:
yield num
num += 1
else:
num += 1
prime = genPrime()
for _ in range(100):
print(next(prime))
答案 11 :(得分:1)
另一个简单的例子,只考虑奇数的简单优化。一切都是用懒惰的流(python生成器)完成的。
用法:primes = list(create_prime_iterator(1,30))
import math
import itertools
def create_prime_iterator(rfrom, rto):
"""Create iterator of prime numbers in range [rfrom, rto]"""
prefix = [2] if rfrom < 3 and rto > 1 else [] # include 2 if it is in range separately as it is a "weird" case of even prime
odd_rfrom = 3 if rfrom < 3 else make_odd(rfrom) # make rfrom an odd number so that we can skip all even nubers when searching for primes, also skip 1 as a non prime odd number.
odd_numbers = (num for num in xrange(odd_rfrom, rto + 1, 2))
prime_generator = (num for num in odd_numbers if not has_odd_divisor(num))
return itertools.chain(prefix, prime_generator)
def has_odd_divisor(num):
"""Test whether number is evenly divisable by odd divisor."""
maxDivisor = int(math.sqrt(num))
for divisor in xrange(3, maxDivisor + 1, 2):
if num % divisor == 0:
return True
return False
def make_odd(number):
"""Make number odd by adding one to it if it was even, otherwise return it unchanged"""
return number | 1
答案 12 :(得分:1)
如果你想直接计算素数,那该怎么做:
def oprime(n):
counter = 0
b = 1
if n == 1:
print 2
while counter < n-1:
b = b + 2
for a in range(2,b):
if b % a == 0:
break
else:
counter = counter + 1
if counter == n-1:
print b
答案 13 :(得分:0)
与user107745类似,但使用'all'而不是double negation(稍微更具可读性,但我认为性能相同):
import math
[x for x in xrange(2,10000) if all(x%t for t in xrange(2,int(math.sqrt(x))+1))]
基本上它在(2,100)的范围内迭代x并且只选择那些对于范围内的所有t没有mod == 0的那些(2,x)
另一种方式可能只是填充素数:
primes = set()
def isPrime(x):
if x in primes:
return x
for i in primes:
if not x % i:
return None
else:
primes.add(x)
return x
filter(isPrime, range(2,10000))
答案 14 :(得分:0)
def genPrimes():
primes = [] # primes generated so far
last = 1 # last number tried
while True:
last += 1
for p in primes:
if last % p == 0:
break
else:
primes.append(last)
yield last
答案 15 :(得分:0)
def check_prime(x):
if (x < 2):
return 0
elif (x == 2):
return 1
t = range(x)
for i in t[2:]:
if (x % i == 0):
return 0
return 1
答案 16 :(得分:0)
您可以使用列表推导以相当优雅的方式创建素数列表。取自here:
>>> noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
>>> primes = [x for x in range(2, 50) if x not in noprimes]
>>> print primes
>>> [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
答案 17 :(得分:0)
SymPy是一个用于符号数学的Python库。它提供了几个生成素数的函数。
getClasses()
以下是一些例子。
isprime(n) # Test if n is a prime number (True) or not (False).
primerange(a, b) # Generate a list of all prime numbers in the range [a, b).
randprime(a, b) # Return a random prime number in the range [a, b).
primepi(n) # Return the number of prime numbers less than or equal to n.
prime(nth) # Return the nth prime, with the primes indexed as prime(1) = 2. The nth prime is approximately n*log(n) and can never be larger than 2**n.
prevprime(n, ith=1) # Return the largest prime smaller than n
nextprime(n) # Return the ith prime greater than n
sieve.primerange(a, b) # Generate all prime numbers in the range [a, b), implemented as a dynamically growing sieve of Eratosthenes.
答案 18 :(得分:0)
如果你想找到范围内的所有素数,你可以这样做:
def is_prime(num):
"""Returns True if the number is prime
else False."""
if num == 0 or num == 1:
return False
for x in range(2, num):
if num % x == 0:
return False
else:
return True
num = 0
itr = 0
tot = ''
while itr <= 100:
itr = itr + 1
num = num + 1
if is_prime(num) == True:
print(num)
tot = tot + ' ' + str(num)
print(tot)
只需添加while its <=
和您的号码即可
OUTPUT:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101
答案 19 :(得分:0)
这里是麻木的Eratosthenes筛子,具有很好的复杂性(比对长度为n的数组排序要低)和矢量化。
import numpy as np
def generate_primes(n):
is_prime = np.ones(n+1,dtype=bool)
is_prime[0:2] = False
for i in range(int(n**0.5)+1):
if is_prime[i]:
is_prime[i*2::i]=False
return np.where(is_prime)[0]
时间:
import time
for i in range(2,10):
timer =time.time()
generate_primes(10**i)
print('n = 10^',i,' time =', round(time.time()-timer,6))
>> n = 10^ 2 time = 5.6e-05
>> n = 10^ 3 time = 6.4e-05
>> n = 10^ 4 time = 0.000114
>> n = 10^ 5 time = 0.000593
>> n = 10^ 6 time = 0.00467
>> n = 10^ 7 time = 0.177758
>> n = 10^ 8 time = 1.701312
>> n = 10^ 9 time = 19.322478
答案 20 :(得分:0)
使用生成器:
def primes(num):
if 2 <= num:
yield 2
for i in range(3, num + 1, 2):
if all(i % x != 0 for x in range(3, int(math.sqrt(i) + 1))):
yield i
用法:
for i in primes(10):
print(i)
2、3、5、7
答案 21 :(得分:0)
这就是我所拥有的:
def is_prime(num):
if num < 2: return False
elif num < 4: return True
elif not num % 2: return False
elif num < 9: return True
elif not num % 3: return False
else:
for n in range(5, int(math.sqrt(num) + 1), 6):
if not num % n:
return False
elif not num % (n + 2):
return False
return True
大数字的速度非常快,因为它只检查数字除数的已经素数。
现在,如果要生成素数列表,可以执行以下操作:
# primes up to 'max'
def primes_max(max):
yield 2
for n in range(3, max, 2):
if is_prime(n):
yield n
# the first 'count' primes
def primes_count(count):
counter = 0
num = 3
yield 2
while counter < count:
if is_prime(num):
yield num
counter += 1
num += 2
在这里使用发电机可能需要提高效率。
仅供参考,而不是说:
one = 1
while one == 1:
# do stuff
你可以简单地说:
while 1:
#do stuff
答案 22 :(得分:0)
您需要确保所有可能的除数不均匀地划分您正在检查的数字。在这种情况下,只要其中一个可能的除数不能均匀地划分数字,你就会打印出你正在检查的数字。
此外,您不想使用continue语句,因为当您已经发现该数字不是素数时,继续只会使它检查下一个可能的除数。
答案 23 :(得分:0)
continue语句看起来不对。
你想从2开始,因为2是第一个素数。
你可以写“while True:”来获得无限循环。
答案 24 :(得分:-1)
import time
maxnum=input("You want the prime number of 1 through....")
n=2
prime=[]
start=time.time()
while n<=maxnum:
d=2.0
pr=True
cntr=0
while d<n**.5:
if n%d==0:
pr=False
else:
break
d=d+1
if cntr==0:
prime.append(n)
#print n
n=n+1
print "Total time:",time.time()-start
答案 25 :(得分:-1)
对我来说,以下解决方案看起来简单易懂。
import math
def is_prime(num):
if num < 2:
return False
for i in range(2, int(math.sqrt(num) + 1)):
if num % i == 0:
return False
return True