因此,我想将声谱图图像馈送到卷积神经网络,以尝试对各种声音进行分类。我希望每个图像精确地为384x128像素。但是,当我实际保存图像时,它仅为297x98。这是我的代码:
def save_spectrogram(num):
dpi = 128
x_pixels = 384
y_pixels = 128
samples, sr = load_wave(num)
stft = np.absolute(librosa.stft(samples))
db = librosa.amplitude_to_db(stft, ref=np.max)
fig = plt.figure(figsize=(x_pixels//dpi, y_pixels//dpi), dpi=dpi, frameon=False)
ax = fig.add_subplot(111)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.set_frame_on(False)
librosa.display.specshow(db, y_axis='linear')
plt.savefig(TRAIN_IMG+str(num)+'.jpg', bbox_inches='tight', pad_inches=0, dpi=dpi)
有人对我如何解决此问题有任何指示吗?我也尝试过在没有子图的情况下执行此操作,但是当我执行该操作时,它仍会保存为错误的大小并且具有空白/背景。
答案 0 :(得分:0)
图供人类查看,并且包含诸如轴标记,标签等对机器学习无用的东西。要向模型提供光谱图的“图像”,应仅输出数据。此数据可以任何格式存储,但是如果要使用标准图像格式,则应使用PNG。 JPEG之类的有损压缩会引入压缩伪像。
此处遵循工作示例代码以保存频谱图。请注意,要获得固定大小的图像输出,代码将提取音频信号的固定长度窗口。将音频流划分为此类固定长度的分析窗口是标准做法。
import librosa
import numpy
import skimage
def scale_minmax(X, min=0.0, max=1.0):
X_std = (X - X.min()) / (X.max() - X.min())
X_scaled = X_std * (max - min) + min
return X_scaled
def spectrogram_image(y, sr, out, hop_length, n_mels):
# use log-melspectrogram
mels = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=n_mels,
n_fft=hop_length*2, hop_length=hop_length)
mels = numpy.log(mels + 1e-9) # add small number to avoid log(0)
# min-max scale to fit inside 8-bit range
img = scale_minmax(mels, 0, 255).astype(numpy.uint8)
img = numpy.flip(img, axis=0) # put low frequencies at the bottom in image
img = 255-img # invert. make black==more energy
# save as PNG
skimage.io.imsave(out, img)
if __name__ == '__main__':
# settings
hop_length = 512 # number of samples per time-step in spectrogram
n_mels = 128 # number of bins in spectrogram. Height of image
time_steps = 384 # number of time-steps. Width of image
# load audio. Using example from librosa
path = librosa.util.example_audio_file()
y, sr = librosa.load(path, offset=1.0, duration=10.0, sr=22050)
out = 'out.png'
# extract a fixed length window
start_sample = 0 # starting at beginning
length_samples = time_steps*hop_length
window = y[start_sample:start_sample+length_samples]
# convert to PNG
spectrogram_image(window, sr=sr, out=out, hop_length=hop_length, n_mels=n_mels)
print('wrote file', out)