我正在尝试在polynomial decay
框架中为learning rate decay
复制Keras
,在Tensorflow
框架中实现如下。
def poly_decay(step, initial_value, decay_period_images_seen):
"""
Decays a variable using a polynomial law.
:param step: number of images seen by the network since the beginning of the training.
:param initial_value: The initial value of the variable to decay..
:param decay_period_images_seen: the decay period in terms of images seen by the network
(1 epoch of 10 batches of 6 images each means that 1 epoch = 60 images seen).
Thus this value must be a multiple of the number of batches
:return: The decayed variable.
"""
factor = 1.0 - (tf.cast(step, tf.float32) / float(decay_period_images_seen))
lrate = initial_value * np.power(factor, 0.9)
return lrate
Keras是否为global step
提供了任何隐藏的参数(也许我不知道),还是Keras中有等效的global step
?还是有其他方法可以在polynomial learning rate decay
框架中实现Keras
?
答案 0 :(得分:0)
基本上,参数本身是optimisers
的参数。
看看optimizers。
sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='mean_squared_error', optimizer=sgd)
因此,在这里,您只需传递poly_decay()
作为参数即可。
通常,我们使用time-based decay
代替polynomial decay
:
learning_rate = 0.1
decay_rate = learning_rate / epochs
momentum = 0.8
sgd = SGD(lr=learning_rate, momentum=momentum, decay=decay_rate, nesterov=False)
选中此blog以获得更多参考!