我正在尝试使用keras可视化CNN模型过滤器可视化。这是我正在关注https://keras.io/examples/conv_filter_visualization/的代码的链接。 注意:我是初学者,正在学习CNN。
该代码对于具有输入形状(?,?,?,3)的VGG-16模型可以正常工作。我想使此代码适用于具有定义的宽度和高度的输入的CNN模型(例如:(?,128,128,3)。 我尝试将模型输入从(?,128,128,3)更改为(?,?,?,3)。但最后却显示了错误。
背景:我想将其重塑为(?,?,?,3),以便可以进行渐进式放大和张量调整以改善图像的可视化。
这是我的笔记本代码
# these are the parameters from other part of the code:
# input_img = model.inputs[0]
# layer_output = layer_dict[layer_name].output
# filter_index = 13 ( can be any number between bounds)
# layer_name = 'conv2d_8'
# step=1.
# epochs=10
# upscaling_steps=9
# upscaling_factor=1.2
# output_dim=(180, 180)
# filter_range=(0, 2)
def _generate_filter_image(input_img,
layer_output,
filter_index):
"""Generates image for one particular filter.
# Arguments
input_img: The input-image Tensor.
layer_output: The output-image Tensor.
filter_index: The to be processed filter number.
Assumed to be valid.
#Returns
Either None if no image could be generated.
or a tuple of the image (array) itself and the last loss.
"""
s_time = time.time()
input_img = tf.reshape(input_img,[-1,-1,-1,3])
print("input image shape after reshape", input_img.shape)
# we build a loss function that maximizes the activation
# of the nth filter of the layer considered
if K.image_data_format() == 'channels_first':
loss = K.mean(layer_output[:, filter_index, :, :])
else:
loss = K.mean(layer_output[:, :, :, filter_index])
# we compute the gradient of the input picture wrt this loss
grads = K.gradients(loss, [input_img])[0]
# normalization trick: we normalize the gradient
grads = normalize(grads)
# this function returns the loss and grads given the input picture
iterate = K.function([input_img], [loss, grads])
# we start from a gray image with some random noise
intermediate_dim = tuple(
int(x / (upscaling_factor ** upscaling_steps)) for x in
output_dim)
if K.image_data_format() == 'channels_first':
input_img_data = np.random.random(
(1, 3, intermediate_dim[0], intermediate_dim[1]))
else:
input_img_data = np.random.random(
(1, intermediate_dim[0], intermediate_dim[1], 3))
input_img_data = np.uint8(np.random.uniform(150, 180, (1,128, 128,
3)))/255
# Slowly upscaling towards the original size prevents
# a dominating high-frequency of the to visualized structure
# as it would occur if we directly compute the 412d-image.
# Behaves as a better starting point for each following dimension
# and therefore avoids poor local minima
for up in reversed(range(upscaling_steps)):
# we run gradient ascent for e.g. 20 steps
t1= time.time()
for _ in range(epochs):
loss_value, grads_value = iterate([input_img_data])
input_img_data += grads_value * step
# Calulate upscaled dimension
intermediate_dim = tuple(
int(x / (upscaling_factor ** up)) for x in output_dim)
# Upscale
img = deprocess_image(input_img_data[0])
img = np.array(pil_image.fromarray(img).resize(intermediate_dim, pil_image.BICUBIC))
input_img_data = [process_image(img, input_img_data[0])]
t2 = time.time()
我收到此错误:
ValueError: Tried to convert 'x' to a tensor and failed. Error: None values not supported.
答案 0 :(得分:0)
当对不同形状值的梯度进行归一化时会出现此问题。
问题出在:
grads = normalize(K.gradients(loss, conv_output)[0])
将其更改为:
grads = normalize(_compute_gradients(loss, [conv_output])[0])
如果这行得通,那么一切都很好,否则
如果出现错误:zip argument #1 must support iteration
,请使用
grads = normalize(K.gradients(loss, conv_output)[0])
# grads = normalize(_compute_gradients(loss, conv_output)[0])
gradient_function = K.function([model.inputs[0]], [conv_output, grads])
选中此issue以获得更多信息!