我正在使用Cerberus验证CSV文件,但在我认为是一些基本逻辑的情况下苦苦挣扎
场景:
CSV文件有2列。 Column 2
仅在Column 1
有值时才需要有值。如果Column 1
为空,则Column 2
也应为空。
我认为这将是编写的最直接的规则之一,但到目前为止,没有任何一项工作按预期进行。
以下是使用python字典的相同逻辑。
from cerberus import Validator
v = Validator()
schema = {
"col1": {"required": False},
"col2": {"required": True, "dependencies": "col1"},
}
document = {
"col1": "a",
"col2": ""
}
v.validate(document, schema) # This responds with True!? Why?
v.errors
{}
在这里我会期望Column 2
出现错误,因为已经提供了Column 1
,但是这里的结果是True
意味着没有错误
我已经检查过提出issues on github,但似乎找不到任何明显的解决方案。
答案 0 :(得分:1)
注意
对该规则(dependencies
)的评估没有不考虑使用required
规则定义的任何约束。< / p>
无论"required"
是什么:
from cerberus import Validator
v = Validator()
document = {
"col1": "a",
"col2": ""
}
schema = {
"col1": {"required": False},
"col2": {"required": True, "dependencies": "col1"},
}
print(v.validate(document, schema)) # True
print(v.errors) # {}
schema = {
"col1": {"required": True},
"col2": {"required": True, "dependencies": "col1"},
}
print(v.validate(document, schema)) # True
print(v.errors) # {}
schema = {
"col1": {"required": True},
"col2": {"required": False, "dependencies": "col1"},
}
print(v.validate(document, schema)) # True
print(v.errors) # {}
http://docs.python-cerberus.org/en/stable/validation-rules.html#dependencies
更新:
您的条件的解决方案“ 如果col1中包含值,则使col2为必需。”。
要应用复杂的规则,请创建一个自定义 Validator ,如下所示:
from cerberus import Validator
class MyValidator(Validator):
def _validate_depends_on_col1(self, depends_on_col1, field, value):
""" Test if a field value is set depending on `col1` field value.
"""
if depends_on_col1 and self.document.get('col1', None) and not value:
self._error(field, f"`{field}` cannot be empty given that `col1` has a value")
v = MyValidator()
schema = {
"col1": {"required": False},
"col2": {"required": True, "depends_on_col1": True},
}
print(v.validate({"col1": "a", "col2": ""}, schema)) # False
print(v.errors) # {'col2': ['`col2` cannot be empty given that `col1` has a value']}
print(v.validate({"col1": "", "col2": ""}, schema)) # True
print(v.errors) # {}
print(v.validate({"col1": 0, "col2": "aaa"}, schema)) # True
print(v.errors) # {}
请注意,您需要遵守将col1
列的值视为空的约定(以调整自定义验证器规则)。
扩展版本以指定“依赖性”字段名称:
class MyValidator(Validator):
def _validate_depends_on_col(self, col_name, field, value):
""" Test if a field value is set depending on `col_name` field value.
"""
if col_name and self.document.get(col_name, None) and not value:
self._error(field, f"`{field}` cannot be empty given that `{col_name}` has a value")
v = MyValidator()
document = {"col1": "a", "col2": ""}
schema = {
"col1": {"required": False},
"col2": {"required": True, "depends_on_col": "col1"},
}
答案 1 :(得分:0)
假设您将csv输入转换为文档列表,则可以先进行预处理以删除col2
字段为空的字段:
for document in documents:
if not document["col2"]:
document.pop("col2")
然后此架构即可完成工作:
{"col1": {
"oneof": [
{"empty": True},
{"empty": False, "dependencies": "col2"}
]
}}
请注意,dependencies
和required
规则不考虑字段的值,而只考虑文档中字段的存在。