我正在尝试找出随机森林分类任务的功能重要性。但这给了我以下错误:
'numpy.ndarray'对象没有属性'columns'
这是我的代码的一部分:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
# importing dataset
dataset=pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:,3:12].values
Y = dataset.iloc[:,13].values
#spliting dataset into test set and train set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.20)
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators=20, random_state=0)
regressor.fit(X_train, y_train)
#feature importance
feature_importances = pd.DataFrame(rf.feature_importances_,index = X_train.columns,columns=['importance']).sort_values('importance',ascending=False)
我希望这应该为我的数据集的每一列提供要素重要性得分。 (注意:原始数据以CSV格式保存)
答案 0 :(得分:0)
因此,从X_train
出来的train_test_split
实际上是一个numpy数组,它将永远不会有列。
其次,当您从X
生成dataset
时返回值numpy.ndarry而不是df时要求输入值。
您需要更改行
feature_importances = pd.DataFrame(rf.feature_importances_,index = X_train.columns,columns=['importance']).sort_values('importance',ascending=False)
到
columns_ = dataset.iloc[:1, 3:12].columns
feature_importances = pd.DataFrame(rf.feature_importances_,index = columns_,columns=['importance']).sort_values('importance',ascending=False)
答案 1 :(得分:0)
使用此:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
# importing dataset
dataset=pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:,3:12].values
Y = dataset.iloc[:,13].values
#spliting dataset into test set and train set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.20)
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators=20, random_state=0)
regressor.fit(X_train, y_train)
#feature importance
feature_importances = pd.DataFrame(regressor.feature_importances_,index = dataset.columns,columns=['importance']).sort_values('importance',ascending=False)
答案 2 :(得分:0)
iloc和loc函数只能应用于熊猫数据框。您正在将它们应用到数组中。 解: 将数组转换为数据框,然后应用iloc或loc