我一直在尝试检索看起来像这样的向量的极值:
或像这样:
我一直在尝试检索局部最大值和最小值,它与以下方法配合使用效果很好:
(diff(sign(diff(values_right_vector))) > 0).nonzero()[0] + 1
,但此后只是解决方法和解决方法,因为在某些情况下,我以前的解决方法总是会失败。
它总是具有相同的模式。
无论您输入图像上的输入矢量(left
和right
),您有什么想法如何检索那些最大值和最小值。
这里是一个示例:
[-2.7, -2.5, -2.1, -2.1, -1.8, -1.4, -0.9, -0.2, 0.5, 1.4, 2.2, 2.9, 3.5, 3.8, 3.8, 3.3, 2.3, 1.1, -0.5, -2.1, -3.5, -4.7, -5.5, -5.8, -5.6, -5.0, -4.2, -3.3, -2.3, -1.4, -0.8, -0.3, 0.0, 0.2, 0.2, 0.2, 0.1, 0.0, 0.0, 0.0, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.1, -0.1, -0.1, -0.1, -0.1, -0.2, -0.3, -0.4, -0.4, -0.5, -0.4, -0.3, -0.1, 0.2, 0.5, 0.7, 0.9, 0.9, 1.0, 0.9, 0.9, 0.9, 0.8, 0.7, 0.6, 0.3, 0.0, -0.4, -0.9, -1.3, -1.5, -1.6, -1.5, -1.1, -0.5, 0.2, 1.2, 2.1, 3.0, 3.8, 4.3, 4.3, 4.0, 3.2, 1.9, 0.4, -1.3, -3.0, -4.4, -5.4, -6.0, -6.0, -5.6, -4.8, -3.9, -2.9, -1.9, -1.2, -0.6, -0.2, 0.0, 0.1, 0.1, 0.1, 0.0, 0.0, -0.1, -0.1, -0.1, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0, -0.1, -0.1, -0.1, -0.2, -0.2, -0.2, -0.2, -0.1, -0.1, 0.0, 0.0, 0.0, 0.0, -0.1, -0.3, -0.5, -0.7, -0.9, -1.1, -1.1, -1.0, -0.8, -0.4, 0.3, 1.1, 1.9, 2.8, 3.6, 4.2, 4.5, 4.5, 4.1, 3.4, 2.5, 1.5, 0.5, -0.5, -1.4, -2.1, -2.8, -3.3, -3.7, -3.9, -3.9, -3.8, -3.4, -2.9, -2.2, -1.3, -0.4, 0.7, 1.7, 2.5, 3.2, 3.6, 3.6, 3.2, 2.4, 1.3, -0.1, -1.6, -3.0, -4.1, -4.9, -5.1, -5.0, -4.4, -3.6, -2.7, -1.8, -1.1, -0.5, -0.1, 0.1, 0.2, 0.2, 0.1, 0.1, 0.0, -0.1, -0.1]```
答案 0 :(得分:0)
Scipy具有find_peaks
函数,您可以使用distance
参数来操作该函数以查找所需的峰。 distance
参数告诉Scipy应该在样本之间寻找多少峰空间。您可以对其进行调整以最适合您的数据。仅使用您提供的示例数据,
import numpy as np
from scipy.signal import find_peaks
import matplotlib.pyplot as plt
y = np.array([-2.7, -2.5, -2.1, -2.1, -1.8, -1.4, -0.9, -0.2, 0.5, 1.4, 2.2, 2.9, 3.5, 3.8, 3.8, 3.3, 2.3, 1.1, -0.5, -2.1, -3.5, -4.7, -5.5, -5.8, -5.6, -5.0, -4.2, -3.3, -2.3, -1.4, -0.8, -0.3, 0.0, 0.2, 0.2, 0.2, 0.1, 0.0, 0.0, 0.0, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.1, -0.1, -0.1, -0.1, -0.1, -0.2, -0.3, -0.4, -0.4, -0.5, -0.4, -0.3, -0.1, 0.2, 0.5, 0.7, 0.9, 0.9, 1.0, 0.9, 0.9, 0.9, 0.8, 0.7, 0.6, 0.3, 0.0, -0.4, -0.9, -1.3, -1.5, -1.6, -1.5, -1.1, -0.5, 0.2, 1.2, 2.1, 3.0, 3.8, 4.3, 4.3, 4.0, 3.2, 1.9, 0.4, -1.3, -3.0, -4.4, -5.4, -6.0, -6.0, -5.6, -4.8, -3.9, -2.9, -1.9, -1.2, -0.6, -0.2, 0.0, 0.1, 0.1, 0.1, 0.0, 0.0, -0.1, -0.1, -0.1, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0, -0.1, -0.1, -0.1, -0.2, -0.2, -0.2, -0.2, -0.1, -0.1, 0.0, 0.0, 0.0, 0.0, -0.1, -0.3, -0.5, -0.7, -0.9, -1.1, -1.1, -1.0, -0.8, -0.4, 0.3, 1.1, 1.9, 2.8, 3.6, 4.2, 4.5, 4.5, 4.1, 3.4, 2.5, 1.5, 0.5, -0.5, -1.4, -2.1, -2.8, -3.3, -3.7, -3.9, -3.9, -3.8, -3.4, -2.9, -2.2, -1.3, -0.4, 0.7, 1.7, 2.5, 3.2, 3.6, 3.6, 3.2, 2.4, 1.3, -0.1, -1.6, -3.0, -4.1, -4.9, -5.1, -5.0, -4.4, -3.6, -2.7, -1.8, -1.1, -0.5, -0.1, 0.1, 0.2, 0.2, 0.1, 0.1, 0.0, -0.1, -0.1])
# Get the maxima and minima
maxima, _ = find_peaks(y, distance = 50)
minima, _ = find_peaks(-y, distance = 50)
find_peaks
返回峰的索引,这就是为什么我们可以使用-y
来获得最小值的原因。
通过执行maxima
之类的操作来选择所有其他最大值,您也可以为minima
和maxima[::2]
编制索引以选择所需的峰。
fig, ax = plt.subplots()
ax.plot(y)
ax.plot(maxima, y[maxima], 'x')
ax.plot(minima, y[minima], 'x')
plt.show()