熊猫串联无法正常工作

时间:2019-06-19 23:55:50

标签: python arrays pandas dataframe concatenation

因此,我一直在我的深度学习分类器上设置标签档案,我想将一个已经存在的2D档案的标签连接到我刚刚制作的标签中。

存在的是'y_trainvalid'(39209,43),代表43类的39209张图像。我要添加的新标签档案是“ new_file_label”(23、43)。在这些档案中,如果数字与类匹配,则将其设置为1,否则将其设置为0。 这是它们两者的示例:

print(y_trainvalid)
print(new_file_label)

       0    1    2    3    4    5    6   ...   36   37   38   39   40   41   42
0     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
1     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
2     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
3     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  1.0  0.0  0.0  0.0  0.0
5     0.0  0.0  0.0  0.0  0.0  1.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
6     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
7     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  1.0  0.0  0.0  0.0
8     0.0  1.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
9     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
10    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
11    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
12    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
13    0.0  0.0  1.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
14    0.0  0.0  0.0  1.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
15    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
16    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
17    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
18    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
19    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
20    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
21    0.0  1.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
22    0.0  0.0  0.0  0.0  1.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
23    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
24    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
25    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
26    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
27    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
28    0.0  0.0  1.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
29    0.0  0.0  0.0  0.0  0.0  1.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
...   ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...
4380  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4381  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4382  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4383  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4384  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4385  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4386  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4387  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4388  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4389  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4390  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4391  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4392  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4393  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4394  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4395  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4396  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4397  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4398  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4399  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4400  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4401  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4402  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4403  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4404  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4405  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4406  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4407  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4408  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4409  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0

[39209 rows x 43 columns]
      0    1    2    3    4    5    6  ...   36   37   38   39   40   41   42
0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
1   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
2   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
3   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
5   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
6   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
7   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
8   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
9   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
10  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
11  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
12  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
13  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
14  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
15  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
16  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
17  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
18  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
19  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
20  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
21  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
22  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0

[23 rows x 43 columns]

当我尝试使用此命令进行连接时:

y_trainvalid2 = pd.concat([y_trainvalid, new_file_label], ignore_index=True)

这样的事情出现了:

 0    1    2    3    4    5    6  ...   41   42    5    6    7    8    9
39204  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
39205  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
39206  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
39207  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
39208  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
39209  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39210  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39211  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39212  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39213  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39214  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39215  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39216  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39217  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39218  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39219  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39220  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39221  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39222  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39223  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39224  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39225  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39226  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39227  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39228  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39229  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39230  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39231  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0

好像它使列数加倍以适合数据,而不是将新数据放在其正下方。我不确定为什么会这样,因为我很确定两个标签档案的列数都相同。

当我使用'y_trainvalid2.head()。to_dict()'命令进行打印时,会出现:

{0: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '0': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 1: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '1': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 10: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '10': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 11: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '11': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 12: {0: 1.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '12': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 13: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '13': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 14: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '14': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 15: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '15': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 16: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '16': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 17: {0: 0.0, 1: 1.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '17': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 18: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '18': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 19: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '19': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 2: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '2': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 20: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '20': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 21: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '21': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 22: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '22': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 23: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '23': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 24: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '24': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 25: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '25': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 26: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '26': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 27: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '27': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 28: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '28': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 29: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '29': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 3: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '3': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 30: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '30': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 31: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '31': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 32: {0: 0.0, 1: 0.0, 2: 0.0, 3: 1.0, 4: 0.0},
 '32': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 33: {0: 0.0, 1: 0.0, 2: 1.0, 3: 0.0, 4: 0.0},
 '33': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 34: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '34': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 35: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '35': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 36: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '36': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 37: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '37': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 38: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0},
 '38': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 39: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '39': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 4: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '4': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 40: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '40': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 41: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '41': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 42: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '42': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 5: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '5': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 6: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '6': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 7: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '7': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 8: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '8': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 9: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '9': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan}}

我该如何解决这个问题?

1 个答案:

答案 0 :(得分:1)

y_trainvalid.columns = [str(x) for x in y_trainvalid.columns]
new_file_label.columns = [str(x) for x in new_file_label.columns]
y_trainvalid2 = pd.concat([y_trainvalid, new_file_label])