我正在尝试为FINUFFT例程编写一个R包装器,以计算不均匀采样序列的FFT。我几乎没有C / C ++的经验,因此我正在通过一个示例将传统的傅里叶变换与NUFFT进行比较。示例代码如下。
// this is all you must include for the finufft lib...
#include "finufft.h"
#include <complex>
// also needed for this example...
#include <stdio.h>
#include <stdlib.h>
using namespace std;
int main(int argc, char* argv[])
/* Simple example of calling the FINUFFT library from C++, using plain
arrays of C++ complex numbers, with a math test. Barnett 3/10/17
Double-precision version (see example1d1f for single-precision)
Compile with:
g++ -fopenmp example1d1.cpp -I ../src ../lib-static/libfinufft.a -o example1d1 -lfftw3 -lfftw3_omp -lm
or if you have built a single-core version:
g++ example1d1.cpp -I ../src ../lib-static/libfinufft.a -o example1d1 -lfftw3 -lm
Usage: ./example1d1
*/
{
int M = 1e6; // number of nonuniform points
int N = 1e6; // number of modes
double acc = 1e-9; // desired accuracy
nufft_opts opts; finufft_default_opts(&opts);
complex<double> I = complex<double>(0.0,1.0); // the imaginary unit
// generate some random nonuniform points (x) and complex strengths (c):
double *x = (double *)malloc(sizeof(double)*M);
complex<double>* c = (complex<double>*)malloc(sizeof(complex<double>)*M);
for (int j=0; j<M; ++j) {
x[j] = M_PI*(2*((double)rand()/RAND_MAX)-1); // uniform random in [-pi,pi)
c[j] = 2*((double)rand()/RAND_MAX)-1 + I*(2*((double)rand()/RAND_MAX)-1);
}
// allocate output array for the Fourier modes:
complex<double>* F = (complex<double>*)malloc(sizeof(complex<double>)*N);
// call the NUFFT (with iflag=+1): note N and M are typecast to BIGINT
int ier = finufft1d1(M,x,c,+1,acc,N,F,opts);
int n = 142519; // check the answer just for this mode...
complex<double> Ftest = complex<double>(0,0);
for (int j=0; j<M; ++j)
Ftest += c[j] * exp(I*(double)n*x[j]);
int nout = n+N/2; // index in output array for freq mode n
double Fmax = 0.0; // compute inf norm of F
for (int m=0; m<N; ++m) {
double aF = abs(F[m]);
if (aF>Fmax) Fmax=aF;
}
double err = abs(F[nout] - Ftest)/Fmax;
printf("1D type-1 NUFFT done. ier=%d, err in F[%d] rel to max(F) is %.3g\n",ier,n,err);
free(x); free(c); free(F);
return ier;
}
我不需要很多,例如生成测试序列并将其与传统FFT进行比较。此外,我想返回转换的值,而不仅仅是返回表示成功的错误代码。下面是我的代码。
#include "finufft.h"
#include <complex>
#include <Rcpp.h>
#include <stdlib.h>
using namespace Rcpp;
using namespace std;
// [[Rcpp::export]]
ComplexVector finufft(int M, NumericVector x, ComplexVector c, int N) {
// From example code for finufft, sets precision and default options
double acc = 1e-9;
nufft_opts opts; finufft_default_opts(&opts);
// allocate output array for the finufft routine:
complex<double>* F = (complex<double>*)malloc(sizeof(complex<double>*)*N);
// Change vector inputs from R types to C++ types
double* xd = as< double* >(x);
complex<double>* cd = as< complex<double>* >(c);
// call the NUFFT (with iflag=-1): note N and M are typecast to BIGINT
int ier = finufft1d1(M,xd,cd,-1,acc,N,F,opts);
ComplexVector Fd = as<ComplexVector>(*F);
return Fd;
}
当我尝试在Rstudio中获取源代码时,出现错误“没有匹配的函数调用'as(std :: complex Fd
声明的行结束。我认为该错误表明未定义函数“ as”(我知道这是错误的),或者“ as”的参数不是正确的类型。示例here包括一个使用'as'转换为NumericVector的示例,因此除非复杂值复杂,否则在这里我不明白为什么会出现问题。
我知道使用两个名称空间存在潜在的问题,但是我不认为这是问题所在。我最好的猜测是,我尝试使用指针的方式存在问题,但是我缺乏识别指针的经验,因此无法在网上找到任何类似的示例来指导我。
答案 0 :(得分:5)
Rcpp::as<T>
从R数据类型(SEXP
)转换为C ++数据类型,例如Rcpp::ComplexVector
。这不适合您尝试从C样式数组转换为C ++的情况。幸运的是,Rcpp::Vector
是Rcpp::ComplexVector
的基础,它具有用于此任务的构造函数:Vector (InputIterator first, InputIterator last)
。对于另一个方向(从C ++到C样式的数组),可以使用vector.begin()
或&vector[0]
。
但是,人们需要一个reinterpret_cast
在Rcomplex*
和std::complex<double>*
之间转换。不过,这不会造成任何问题,因为Rcomplex
(在C语言中也称为complex double
)和std::complex<doulbe>
是compatible。
一个最小的例子:
#include <Rcpp.h>
#include <complex>
using namespace Rcpp;
// [[Rcpp::export]]
ComplexVector foo(ComplexVector v) {
std::complex<double>* F = reinterpret_cast<std::complex<double>*>(v.begin());
int N = v.length();
// do something with F
ComplexVector Fd(reinterpret_cast<Rcomplex*>(F),
reinterpret_cast<Rcomplex*>(F + N));
return Fd;
}
/*** R
set.seed(42)
foo(runif(4)*(1+1i))
*/
结果:
> Rcpp::sourceCpp('56675308/code.cpp')
> set.seed(42)
> foo(runif(4)*(1+1i))
[1] 0.9148060+0.9148060i 0.9370754+0.9370754i 0.2861395+0.2861395i 0.8304476+0.8304476i
顺便说一句,您可以通过使用reinterpret_cast
作为参数并返回函数的类型来将这些std::vector<std::complex<double>>
移出视线。 Rcpp为您完成其余的工作。这也有助于摆脱裸露的malloc
:
#include <Rcpp.h>
// dummy function with reduced signature
int finufft1d1(int M, double *xd, std::complex<double> *cd, int N, std::complex<double> *Fd) {
return 0;
}
// [[Rcpp::export]]
std::vector<std::complex<double>> finufft(int M,
std::vector<double> x,
std::vector<std::complex<double>> c,
int N) {
// allocate output array for the finufft routine:
std::vector<std::complex<double>> F(N);
// Change vector inputs from R types to C++ types
double* xd = x.data();
std::complex<double>* cd = c.data();
std::complex<double>* Fd = F.data();
int ier = finufft1d1(M, xd, cd, N, Fd);
return F;
}