在Rcpp

时间:2019-06-19 20:22:16

标签: c++ r rcpp

我正在尝试为FINUFFT例程编写一个R包装器,以计算不均匀采样序列的FFT。我几乎没有C / C ++的经验,因此我正在通过一个示例将传统的傅里叶变换与NUFFT进行比较。示例代码如下。

// this is all you must include for the finufft lib...
#include "finufft.h"
#include <complex>

// also needed for this example...
#include <stdio.h>
#include <stdlib.h>
using namespace std;

int main(int argc, char* argv[])
/* Simple example of calling the FINUFFT library from C++, using plain
   arrays of C++ complex numbers, with a math test. Barnett 3/10/17
   Double-precision version (see example1d1f for single-precision)

   Compile with:
   g++ -fopenmp example1d1.cpp -I ../src ../lib-static/libfinufft.a -o example1d1  -lfftw3 -lfftw3_omp -lm
   or if you have built a single-core version:
   g++ example1d1.cpp -I ../src ../lib-static/libfinufft.a -o example1d1 -lfftw3 -lm

   Usage: ./example1d1
*/
{
  int M = 1e6;            // number of nonuniform points
  int N = 1e6;            // number of modes
  double acc = 1e-9;      // desired accuracy
  nufft_opts opts; finufft_default_opts(&opts);
  complex<double> I = complex<double>(0.0,1.0);  // the imaginary unit

  // generate some random nonuniform points (x) and complex strengths (c):
  double *x = (double *)malloc(sizeof(double)*M);
  complex<double>* c = (complex<double>*)malloc(sizeof(complex<double>)*M);
  for (int j=0; j<M; ++j) {
    x[j] = M_PI*(2*((double)rand()/RAND_MAX)-1);  // uniform random in [-pi,pi)
    c[j] = 2*((double)rand()/RAND_MAX)-1 + I*(2*((double)rand()/RAND_MAX)-1);
  }
  // allocate output array for the Fourier modes:
  complex<double>* F = (complex<double>*)malloc(sizeof(complex<double>)*N);

  // call the NUFFT (with iflag=+1): note N and M are typecast to BIGINT
  int ier = finufft1d1(M,x,c,+1,acc,N,F,opts);

  int n = 142519;   // check the answer just for this mode...
  complex<double> Ftest = complex<double>(0,0);
  for (int j=0; j<M; ++j)
    Ftest += c[j] * exp(I*(double)n*x[j]);
  int nout = n+N/2;        // index in output array for freq mode n
  double Fmax = 0.0;       // compute inf norm of F
  for (int m=0; m<N; ++m) {
    double aF = abs(F[m]);
    if (aF>Fmax) Fmax=aF;
  }
  double err = abs(F[nout] - Ftest)/Fmax;
  printf("1D type-1 NUFFT done. ier=%d, err in F[%d] rel to max(F) is %.3g\n",ier,n,err);

  free(x); free(c); free(F);
  return ier;
}

我不需要很多,例如生成测试序列并将其与传统FFT进行比较。此外,我想返回转换的值,而不仅仅是返回表示成功的错误代码。下面是我的代码。

#include "finufft.h"
#include <complex>
#include <Rcpp.h>
#include <stdlib.h>
using namespace Rcpp;
using namespace std;

// [[Rcpp::export]]

ComplexVector finufft(int M, NumericVector x, ComplexVector c, int N) {

  // From example code for finufft, sets precision and default options
  double acc = 1e-9;
  nufft_opts opts; finufft_default_opts(&opts);
  // allocate output array for the finufft routine:
  complex<double>* F = (complex<double>*)malloc(sizeof(complex<double>*)*N);

  // Change vector inputs from R types to C++ types
  double* xd = as< double* >(x);
  complex<double>* cd = as< complex<double>* >(c);      

  // call the NUFFT (with iflag=-1): note N and M are typecast to BIGINT
  int ier = finufft1d1(M,xd,cd,-1,acc,N,F,opts);
  ComplexVector Fd = as<ComplexVector>(*F);

  return Fd;
}

当我尝试在Rstudio中获取源代码时,出现错误“没有匹配的函数调用'as(std :: complex *&)'”,指向向Fd声明的行结束。我认为该错误表明未定义函数“ as”(我知道这是错误的),或者“ as”的参数不是正确的类型。示例here包括一个使用'as'转换为NumericVector的示例,因此除非复杂值复杂,否则在这里我不明白为什么会出现问题。

我知道使用两个名称空间存在潜在的问题,但是我不认为这是问题所在。我最好的猜测是,我尝试使用指针的方式存在问题,但是我缺乏识别指针的经验,因此无法在网上找到任何类似的示例来指导我。

1 个答案:

答案 0 :(得分:5)

Rcpp::as<T>从R数据类型(SEXP)转换为C ++数据类型,例如Rcpp::ComplexVector。这不适合您尝试从C样式数组转换为C ++的情况。幸运的是,Rcpp::VectorRcpp::ComplexVector的基础,它具有用于此任务的构造函数:Vector (InputIterator first, InputIterator last)。对于另一个方向(从C ++到C样式的数组),可以使用vector.begin()&vector[0]

但是,人们需要一个reinterpret_castRcomplex*std::complex<double>*之间转换。不过,这不会造成任何问题,因为Rcomplex(在C语言中也称为complex double)和std::complex<doulbe>compatible

一个最小的例子:

#include <Rcpp.h>
#include <complex>
using namespace Rcpp;

// [[Rcpp::export]]
ComplexVector foo(ComplexVector v) {
    std::complex<double>* F = reinterpret_cast<std::complex<double>*>(v.begin());
    int N = v.length();
    // do something with F
    ComplexVector Fd(reinterpret_cast<Rcomplex*>(F), 
                     reinterpret_cast<Rcomplex*>(F + N));
    return Fd;
}

/*** R
set.seed(42)
foo(runif(4)*(1+1i))
*/

结果:

> Rcpp::sourceCpp('56675308/code.cpp')

> set.seed(42)

> foo(runif(4)*(1+1i))
[1] 0.9148060+0.9148060i 0.9370754+0.9370754i 0.2861395+0.2861395i 0.8304476+0.8304476i

顺便说一句,您可以通过使用reinterpret_cast作为参数并返回函数的类型来将这些std::vector<std::complex<double>>移出视线。 Rcpp为您完成其余的工作。这也有助于摆脱裸露的malloc

#include <Rcpp.h>
// dummy function with reduced signature
int finufft1d1(int M, double *xd, std::complex<double> *cd, int N, std::complex<double> *Fd) {
    return 0;
}

// [[Rcpp::export]]
std::vector<std::complex<double>> finufft(int M, 
                                          std::vector<double> x, 
                                          std::vector<std::complex<double>> c, 
                                          int N) {

    // allocate output array for the finufft routine:
    std::vector<std::complex<double>> F(N);
    // Change vector inputs from R types to C++ types
    double* xd = x.data();
    std::complex<double>* cd = c.data();      
    std::complex<double>* Fd = F.data();      

    int ier = finufft1d1(M, xd, cd, N, Fd);

    return F;
}