我有几个看起来像这样的类:
struct neg_inf {
constexpr double operator()() { return -std::numeric_limits<double>::infinity(); }
};
struct pos_inf {
constexpr double operator()() { return std::numeric_limits<double>::infinity(); }
};
template<typename dX, class LowerBound, class UpperBound>
class limit {
dX dx;
UpperBound upperBound;
LowerBound lowerBound;
double step_size;
limit( dX x, LowerBound lower, UpperBound upper, double step = 1 ) :
dx{ x }, lowerBound{ lower }, upperBound{ upper }, step_size{ step }
{}
dX value() const { return dx; }
LowerBound lower() const { return lowerBound; }
UpperBound upper() const { return upperBound; }
double step() const { return step_size; }
};
到目前为止,这些类均按预期工作。现在,我想使用诸如std::enable_if_t
,std::is_arithemtic
std::is_same
之类的条件来修改模板参数。
这些是实例化限制对象所需的条件。
dX
必须至少为arithmetic
和numerical
Lower
和Upper
bound
必须是numerical
,arithmetic
或neg_inf
或pos_inf
。
例如,以下是有效的实例:
dX = 1st and can be any: int, long, float, double, /*complex*/, etc.
limit< 1st, 1st, 1st > // default template
limit< 1st, 1st, pos_inf > // these will be specializations
limit< 1st, 1st, neg_inf >
limit< 1st, pos_inf, 1st >
limit< 1st, neg_inf, 1st >
limit< 1st, pos_inf, pos_inf >
limit< 1st, neg_inf, neg_inf >
limit< 1st, neg_inf, pos_inf >
limit< 1st, pos_inf, neg_inf >
这些是实例化模板的有效条件。当UpperBound
和LowerBound
中的一个或两个都是infinity
类型时,我打算对这个类进行部分专门化。当upper
和lower
的边界是数字-算术类型时,常规或默认模板将处理它们。
我的问题是,template declaration
库中班上的type_traits
是什么样的?
答案 0 :(得分:2)
将模板类型限制为类的一种方法是为SFINAE添加额外的参数:
template <typename dX, class LowerBound, class UpperBound, typename Enabler = void>
class limit;
然后提供适当的SFINAE专业化
template <typename dX, class LowerBound, class UpperBound>
class limit<dX,
LowerBound,
UpperBound,
std::enable_if_t<my_condition<dX, LowerBound, UpperBound>::value>>
{
// ...
};
因此,在您的情况下,my_condition
应该类似于
template <typename dX, class LowerBound, class UpperBound>
using my_condition =
std::conjunction<std::is_arithmetic<dX>,
std::disjunction<std::is_arithmetic<LowerBound>,
std::is_same<LowerBound, neg_inf>,
std::is_same<LowerBound, pos_inf>>,
std::disjunction<std::is_arithmetic<UpperBound>,
std::is_same<UpperBound, neg_inf>,
std::is_same<UpperBound, pos_inf>>
>;
另一种方法是static_assert
:
template <typename dX, class LowerBound, class UpperBound>
class limit
{
static_assert(std::is_arithmetic<dX>::value, "!");
static_assert(std::is_arithmetic<LowerBound>::value
|| std::is_same<LowerBound, neg_inf>::value
|| std::is_same<LowerBound, pos_inf>::value, "!");
static_assert(std::is_arithmetic<UpperBound>::value
|| std::is_same<UpperBound, neg_inf>::value
|| std::is_same<UpperBound, pos_inf>::value, "!");
// ...
};
答案 1 :(得分:2)
如果没有即将推出的C++20
标准,我们将获得concepts和constraints。考虑到这一点,我们可以声明我们自己的概念并摆脱SFINAE。
#include <limits>
#include <type_traits>
struct neg_inf {
constexpr double operator()() { return -std::numeric_limits<double>::infinity(); }
};
struct pos_inf {
constexpr double operator()() { return std::numeric_limits<double>::infinity(); }
};
template<typename T>
concept Arithmetic = std::is_arithmetic_v<T>;
template<typename T>
concept Bound = std::is_arithmetic_v<T> ||
std::is_same_v<T, neg_inf> ||
std::is_same_v<T, pos_inf>;
template<Arithmetic dX, Bound LowerBound, Bound UpperBound>
class limit {
private:
dX dx;
UpperBound upperBound;
LowerBound lowerBound;
double step_size;
public:
limit() = default;
limit( dX x, LowerBound lower, UpperBound upper, double step = 1 ) :
dx{ x }, lowerBound{ lower }, upperBound{ upper }, step_size{ step }
{}
dX value() const { return dx; }
LowerBound lower() const { return lowerBound; }
UpperBound upper() const { return upperBound; }
double step() const { return step_size; }
};