我遵循了教程中的步骤来刮取一个表,然后将数据导出到一个csv文件中。尝试执行
文件时,我通过PyCharm遇到错误“追溯(最近一次通话): 在第1行的文件“ I:/Scrape/MediumCode.py”中 汇入要求 ModuleNotFoundError:没有名为“ requests”的模块
我还假设代码及其逻辑中还有其他错误,但这是我遇到的第一个问题,在不理解为什么无法识别该库的情况下无法进一步研究
成功执行pip安装请求
from urllib.request import urlopen as uReq
from bs4 import BeautifulSoup as soup
my_url = 'https://en.wikipedia.org/wiki/Public_holidays_in_Switzerland'
uClient = uReq(my_url)
page_html = uClient.read()
uClient.close()
page_soup = soup(page_html, "html.parser")
containers = page_soup.findAll("table", {"class":"wikitable"})
filename = "holidays.csv"
f = open(filename, "w")
headers = "holiday, holiday_date"
f.write(headers)
for container in containers:
holiday = container.table.tbody.tr.td.a["title"]
name_container = container.findAll("a", {"class":"title"})
holiday_name = name_container[0].text
date_container = container.findAll("td")
date = date_container[0].text.strip()
print("holiday: " + brand)
print("holiday_name: " + holiday_name)
print("date: " + date)
f.write(holiday + "," + holiday_name.replace(",", "|") + "," + date + "\n")
f.close()
答案 0 :(得分:0)
使用您的代码,我可以获得page_html
很好。因此,由于某种原因,您的系统不喜欢urllib.request
。请注意,request
与requests
不太相同。据我了解,requests
是建立在urllib3
之上的,而urllib.request
是在标准库中的,即使它们都指向了一些常见的东西。
此代码对您有用吗?
from urllib import request
my_url = 'https://en.wikipedia.org/wiki/Public_holidays_in_Switzerland'
p = request.urlopen(my_url)
print(p.read())
答案 1 :(得分:0)
使用pandas
库将假期表数据保存到holiday_data.csv
文件中,并在当前项目目录中创建csv文件。
import requests
import pandas as pd
url = 'https://en.wikipedia.org/wiki/Public_holidays_in_Switzerland'
response = requests.get(url)
tables = pd.read_html(response.text)
# write holiday table data into `holiday_data` csv file
tables[0].to_csv("holiday_data.csv")
安装熊猫库
pip3 install pandas
如果requests
库仍未在系统中引发错误,请尝试以下操作:
from urllib.request import urlopen as uReq
import pandas as pd
url = 'https://en.wikipedia.org/wiki/Public_holidays_in_Switzerland'
response = uReq(url)
tables = pd.read_html(response.read())
#select only holiday column
select_table_column = ["Holiday"]
'''
#or select multiple columns
select_table_column = ["Holiday","Date"]
'''
# filter table data by selected columns
holiday = tables[0][select_table_column]
# # write holiday table data into `holiday_data` csv file and set csv header
holiday.to_csv("holiday_data.csv",header=True)