我正在开发一个使用pandas
数据帧和大型词典的程序。该数据帧是从大约CSV读取的。 700MB。
我正在Windows上使用Python 3.7.3
我注意到我正在运行的程序非常慢,并且在每次算法循环后都会变慢。
程序读取数据帧的每一行,检查df
每行的每个项目上的某些条件,如果满足这些条件,则它将项目及其状态存储在字典中。这个字典可以变得很大。
我尝试使用CProfile
对代码进行性能分析,并且发现garbage-collector
是使用大约90%的执行时间的函数。
我看到通过致电gc.disable()
解决了类似的问题,但这对我没有任何帮助。
很奇怪(我不知道这是否正常),但是如果我将print(len(gc.get_objects()))
作为代码的第一行,我得到51053
,这似乎在考虑很多因素,因为尚未调用任何函数。
我的CProfile
尝试:(仅占CSV的一小部分,因为要完成整个CSV的尝试将花费数小时)
cProfile.run('get_pfs_errors("Logs/L5/L5_2000.csv")', 'restats.txt')
import pstats
from pstats import SortKey
p = pstats.Stats('restats.txt')
p.sort_stats(SortKey.CUMULATIVE).print_stats(10)
p.sort_stats(SortKey.TIME).print_stats(10)
以下是CProfile
的统计信息:
Tue Jun 18 15:40:19 2019 restats.txt
1719320 function calls (1459451 primitive calls) in 7.569 seconds
Ordered by: cumulative time
List reduced from 819 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 7.569 7.569 {built-in method builtins.exec}
1 0.001 0.001 7.569 7.569 <string>:1(<module>)
1 0.000 0.000 7.568 7.568 C:/Users/BC744818/Documents/OPTISS_L1_5/test_profile.py:6(get_pfs_errors)
1 0.006 0.006 7.503 7.503 C:\Users\BC744818\Documents\OPTISS_L1_5\utils\compute_pfs_rules.py:416(compute_pfs_rules)
1 0.197 0.197 7.498 7.498 C:\Users\BC744818\Documents\OPTISS_L1_5\utils\compute_pfs_rules.py:323(test_logs)
264 0.001 0.000 6.532 0.025 C:\Users\BC744818\Documents\OPTISS_L1_5\venv\lib\site-packages\pandas\core\series.py:982(__setitem__)
529 0.010 0.000 6.158 0.012 C:\Users\BC744818\Documents\OPTISS_L1_5\venv\lib\site-packages\pandas\core\generic.py:3205(_check_setitem_copy)
528 6.125 0.012 6.125 0.012 {built-in method gc.collect}
264 0.004 0.000 3.430 0.013 C:\Users\BC744818\Documents\OPTISS_L1_5\venv\lib\site-packages\pandas\core\series.py:985(setitem)
264 0.004 0.000 3.413 0.013 C:\Users\BC744818\Documents\OPTISS_L1_5\venv\lib\site-packages\pandas\core\indexing.py:183(__setitem__)
Tue Jun 18 15:40:19 2019 restats.txt
1719320 function calls (1459451 primitive calls) in 7.569 seconds
Ordered by: internal time
List reduced from 819 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
528 6.125 0.012 6.125 0.012 {built-in method gc.collect}
264 0.405 0.002 0.405 0.002 {built-in method gc.get_objects}
1 0.197 0.197 7.498 7.498 C:\Users\BC744818\Documents\OPTISS_L1_5\utils\compute_pfs_rules.py:323(test_logs)
71280/33 0.048 0.000 0.091 0.003 C:\Users\BC744818\AppData\Local\Programs\Python\Python37\lib\copy.py:132(deepcopy)
159671 0.033 0.000 0.056 0.000 {built-in method builtins.isinstance}
289 0.026 0.000 0.026 0.000 {built-in method nt.stat}
167191/83791 0.024 0.000 0.040 0.000 C:\Users\BC744818\AppData\Local\Programs\Python\Python37\lib\json\encoder.py:333(_iterencode_dict)
8118/33 0.019 0.000 0.090 0.003 C:\Users\BC744818\AppData\Local\Programs\Python\Python37\lib\copy.py:236(_deepcopy_dict)
167263/83794 0.017 0.000 0.048 0.000 C:\Users\BC744818\AppData\Local\Programs\Python\Python37\lib\json\encoder.py:277(_iterencode_list)
1067/800 0.017 0.000 0.111 0.000 C:\Users\BC744818\Documents\OPTISS_L1_5\venv\lib\site-packages\pandas\core\indexes\base.py:253(__new__)
答案 0 :(得分:0)
谢谢@ user9993950,感谢您,我解决了它。
测试该程序时,我有一个SettingWithCopyWarning
,但我想在修复此警告之前先确定程序的速度。
尽管如此,通过修复警告,我也大大提高了程序的速度,gc
不再占用所有运行时间
我不知道是什么原因造成的,如果有人知道并想分享这些知识,请这样做。