不是每个库都装载30个包,而是可以循环执行此操作?
pckgs = c("readr", "dplyr")
sapply(pckgs, library)
背景:
在加载之前,我会测试软件包是否已安装。为此,我已经以c("readr", ..., "dplyr")
的形式获得了软件包名称,并且想知道我是否还可以循环加载该软件包,而不是编写30次library()
。
我尝试过的事情:
我简化为一个软件包:
sapply("readr", library)
sapply("readr", function(lib) library(lib))
sapply("readr", function(lib) library(get(lib)))
剧透:
我想发布此问题,然后决定检查参数中的“力字符”,感到很幸运。 (问一个问题并自己回答是有点怪异的,但是当我读到这个时,我感到很有动力:) https://stackoverflow.com/help/self-answer
答案 0 :(得分:3)
参数imports ***
trainloader = torch.utils.data.DataLoader(
datasets.Cityscapes('/media/farshid/DataStore/temp/cityscapes/', split='train', mode='fine',
target_type='semantic', target_transform =trans,
transform=input_transform ), batch_size = batch_size, num_workers = 2)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = lolNet()
criterion = CrossEntropyLoss2d()
net.to(device)
num_of_classes = 34
for epoch in range(int(0), 200000):
lr = 0.0001
for batch, data in enumerate(trainloader, 0):
inputs, labels = data
labels = labels.long()
inputs, labels = inputs.to(device), labels.to(device)
labels = labels.view([-1, ])
optimizer = optim.Adam(net.parameters(), lr=lr)
optimizer.zero_grad()
outputs = net(inputs)
outputs = outputs.view(-1, num_of_class)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
outputs = outputs.to('cpu')
outputs = outputs.data.numpy()
outputs = outputs.reshape([-1, num_of_class])
mask = np.zeros([outputs.shape[0]])
#
for i in range(len(outputs)):
mask[i] = np.argmax(outputs[i])
mask = mask.reshape([-1, 1])
IoU = jaccard_score(labels.to('cpu').data, mask, average='micro')
可以用于此目的。
示例:
character.only