我有一个数据框,可以使用下面给出的代码生成
data_file= pd.DataFrame({'person_id':[1,1,1,2,2,2,3,3,3],'ob.date': [np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan],
'observation': ['Age','interviewdate','marital_status','Age','interviewdate','marital_status','Age','interviewdate','marital_status'],
'answer': [21,'21/08/2017','Single',26,'11/03/2010','Single',41,'31/09/2012','Married'],
'visit.date': [np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan]
})
输入数据框如下图所示
我想做的是从与每个人对应的“答案”列中获取日期(采访日期)值,并将其放在同一人的“ ob.date”和“ visit.date”列中。>
我尝试过滤数据框,但不确定如何继续进行。这种情况仅发生在已过滤的行中,但我希望将日期填充到原始或输入数据框中
df2 = data_file[(data_file.observation == 'interviewdate')]
df2.reset_index(inplace=True)
df3=data_file.merge(df2)
df3['ob.date']=df2['answer']
df3['visit.date']=df2['answer']
如何实现如下所示的输出?如您所见,每个人的采访数据都填在“ ob.date”和“ visit.date”列中
答案 0 :(得分:3)
过滤后,用索引Series
创建person_id
,并用Series.map
创建新列:
s = data_file[(data_file.observation == 'interviewdate')].set_index('person_id')['answer']
print (s)
person_id
1 21/08/2017
2 11/03/2010
3 31/09/2012
Name: answer, dtype: object
data_file['ob.date'] = data_file['person_id'].map(s)
data_file['visit.date'] = data_file['person_id'].map(s)
print (data_file)
person_id ob.date observation answer visit.date
0 1 21/08/2017 Age 21 21/08/2017
1 1 21/08/2017 interviewdate 21/08/2017 21/08/2017
2 1 21/08/2017 marital_status Single 21/08/2017
3 2 11/03/2010 Age 26 11/03/2010
4 2 11/03/2010 interviewdate 11/03/2010 11/03/2010
5 2 11/03/2010 marital_status Single 11/03/2010
6 3 31/09/2012 Age 41 31/09/2012
7 3 31/09/2012 interviewdate 31/09/2012 31/09/2012
8 3 31/09/2012 marital_status Married 31/09/2012
如果可能,请更改数据格式-使用DataFrame.pivot
:
df = data_file.pivot('person_id','observation','answer')
print (df)
observation Age interviewdate marital_status
person_id
1 21 21/08/2017 Single
2 26 11/03/2010 Single
3 41 31/09/2012 Married