按多个维度分组,汇总并添加计算列

时间:2019-06-17 20:58:45

标签: r dplyr aggregate

我有这个df:

  boxChange   sameCat
# C1 > C2     TRUE
# C1 > C2     TRUE
# A0 > A1     TRUE
# A1 > E4     FALSE
# C3 > E6     FALSE
# E0 > E3     TRUE
# ...         ...

我想按两列分组,对出现的次数进行计数,并按其编号进行排列。通过使用dplyr,我会这样:

df2 <- df %>%  
group_by(boxChange, sameCat) %>%
summarise(occs = n()) %>%
arrange(desc(occs))

获取:

  boxChange   sameCat   occs
# C1 > C2     TRUE      312
# A0 > A1     TRUE      189
# E0 > E3     TRUE      13
# C3 > E6     FALSE     123
# A1 > E4     FALSE     70

现在,我想计算每个occs在总数和累计百分比中所占的百分比,得到类似的结果

  boxChange   sameCat   occs   perc   cump
# C1 > C2     TRUE      312    44      44
# A0 > A1     TRUE      189    27      71
# E0 > E3     TRUE       13     2      73
# C3 > E6     FALSE     123    17      90
# A1 > E4     FALSE      70    10     100

我尝试了以下内容

df2 <- df %>%  
group_by(boxChange, sameCat) %>%
summarise(occs = n()) %>%
arrange(desc(occs)) %>%
mutate(perc = occs/sum(occs)*100) %>%
mutate(cump = cumsum(perc))

但是输出如下

  boxChange   sameCat   occs   perc   cump
# C1 > C2     TRUE      312    100     100
# A0 > A1     TRUE      189    100     100
# E0 > E3     TRUE       13    100     100
# C3 > E6     FALSE     123    100     100
# A1 > E4     FALSE      70    100     100

我无法理解为什么会这样,并且找不到其他报告类似问题的线程。你有什么见识吗?

1 个答案:

答案 0 :(得分:1)

我们可能需要ungroup

df2 <- df %>%  
       group_by(boxChange, sameCat) %>%
        summarise(occs = n()) %>%
        arrange(desc(occs)) %>%
        ungroup %>%
        mutate(perc = occs/sum(occs)*100, 
               cump = cumsum(perc))

-

或者,如果我们需要保持分组完整,请使用sum(.$occs)

更新

如果我们从OP的arraged'occs'开始

df %>% 
  ungroup %>% 
  mutate(perc = round(occs/sum(occs) * 100),
         cump = cumsum(perc))
#   boxChange sameCat occs perc cump
#1   C1 > C2    TRUE  312   44   44
#2   A0 > A1    TRUE  189   27   71
#3   E0 > E3    TRUE   13    2   73
#4   C3 > E6   FALSE  123   17   90
#5   A1 > E4   FALSE   70   10  100