我正在尝试合并以下文件
df1
unix_time,hk1,hk2,val2,hint
1560752700,10,15,3,6:25am
1560753900,20,25,5,6:45am
1560756600,10,10,-1,7:30am
df2
unix_time,hk1,hk2,val,hint
1560751200,10,15,1,6am
1560754800,20,25,2,7am
1560758400,10,10,3,8am
在unix_time
我正在尝试按以下方式进行操作
merged = pd.merge_asof(df2.sort_values('unix_time'),
df1.sort_values('unix_time'),
by=['hk1', 'hk2'],
on='unix_time',
tolerance=pd.Timedelta(seconds=1800),
direction='nearest')
从文档开始,可以将merge_asof公差指定为pd.Timedelta。 但是当我运行上面的代码时,我得到了
pandas.errors.MergeError: incompatible tolerance <class 'pandas._libs.tslibs.timedeltas.Timedelta'>, must be compat with type int64
我该如何解决?
谢谢
以上示例的预期连接值输出:
val | val2
1 | 3
2 | 5
3 | -1
答案 0 :(得分:2)
使用tolerance=1800
:
merged = pd.merge_asof(df2.sort_values('unix_time'),
df1.sort_values('unix_time'),
by=['hk1', 'hk2'],
on='unix_time',
tolerance=1800,
direction='nearest')
print (merged)
unix_time hk1 hk2 val hint_x val2 hint_y
0 1560751200 10 15 1 6am 3 6:25am
1 1560754800 20 25 2 7am 5 6:45am
2 1560758400 10 10 3 8am -1 7:30am
或者如果要使用您的解决方案,请将两列都转换为merge_asof
之前的日期时间:
df1['unix_time'] = pd.to_datetime(df1['unix_time'], unit='s')
df2['unix_time'] = pd.to_datetime(df2['unix_time'], unit='s')
merged = pd.merge_asof(df2.sort_values('unix_time'),
df1.sort_values('unix_time'),
by=['hk1', 'hk2'],
on='unix_time',
tolerance=pd.Timedelta(seconds=1800),
direction='nearest')
print (merged)
unix_time hk1 hk2 val hint_x val2 hint_y
0 2019-06-17 06:00:00 10 15 1 6am 3 6:25am
1 2019-06-17 07:00:00 20 25 2 7am 5 6:45am
2 2019-06-17 08:00:00 10 10 3 8am -1 7:30am