我试图解决乘以向量“因子”之和的因数x。向量'Factor'的总和应类似于向量'Basic'的总和。 首先,我读了一个csv,看起来像下面的DataFrame:
谢谢您的帮助。
好吧,我也尝试了最小化和反弹。也许使用scipy.optimize会更好?
import pandas as pd
from scipy.optimize import minimize, optimize
import numpy as np
path='/scipytest.csv'
dffunc=pd.read_csv(path, decimal=',', delimiter=';')
BaseSum=np.sum(dffunc['Basic'])
FacSum=np.sum(dffunc['Factor'])
def f(x, FacSum):
return BaseSum-FacSum*x
con = {'type': 'ineq',
'fun': lambda BaseSum,FacSum: BaseSum-FacSum,
'args': (FacSum,)}
x=0
result = minimize(f,(x,FacSum), args=(FacSum,), method='SLSQP', constraints=con)
print(result.x)
print(f(result.x))
提高ValueError(“目标函数必须返回标量”)
ValueError:目标函数必须返回标量
答案 0 :(得分:1)
我认为您不一定需要scipy.optimize.minimize
。由于您要最小化标量,因此可以使用scipy.optimize.minimize_scalar
(docs)。可以像下面这样完成:
from scipy.optimize import minimize_scalar
import numpy as np
# define vecs
basic_vec = np.array([123, 342, 235, 123, 56, 345, 234, 123, 345, 54, 234]).reshape(11, 1)
factor_vec = np.array([234, 345, 453, 345, 456, 457, 23, 45, 56, 567, 5]).reshape(11, 1)
# define sums
BaseSum = np.sum(basic_vec)
FacSum = np.sum(factor_vec)
# define
f = lambda x, FacSum: np.abs(BaseSum - FacSum * x)
result = minimize_scalar(f, args = (FacSum,), bounds = (0, FacSum), method = 'bounded')
# prints
print("x = ", result.x)
print("BaseSum - FacSum * x = ", f(result.x, FacSum))
输出:
x = 0.741461642947231
BaseSum - FacSum * x = 0.004465840431748802
此外,我什至不知道为什么当您只需做以下事情时,为什么甚至需要使用最小化:
x = BaseSum/FacSum