我已经阅读了多个有关位域的类似主题,但是我对它的理解不够,因此我无法使用它。这是我的问题。我有这个struct R
:
struct R{
unsigned int opcode: 6;
unsigned int rs: 5;
unsigned int rt: 5;
unsigned int rd: 5;
unsigned int shamt: 5;
unsigned int funct: 6;
};
我正在使用位字段,以便定义我的结构是32位数据。对于那些想知道的人,此结构表示R类型MIPS
指令。
我想要的是将数据写入名为result
的文件中,为此我使用了以下代码:
struct R test = {32,0,11,21,19,0}
FILE *fp = fopen("./result", "rb");
fwrite(&test,sizeof(test),1,result);
使用此代码,如果我在控制台xxd -b result
中运行,则希望看到以下内容:
00000000: 00100000 01011000 01110101 00000010
反而我得到
00000000: 00100000 10100000 01110011 00000001
我想问题是fwrite
,但我不太了解。
这是一项作业,所以我想到了另一种选择:
char sequence[32]
,该数组的索引模拟1位。struct R{
char opcode[6];
char rs[5];
char rt[5];
char rd[5];
char shamt[5];
char funct[6];
};
00100000
给出0x20
。putc
写入我的文件。我的选择很长,所以有办法直接做到吗?还是我应该知道另一种选择?
答案 0 :(得分:5)
正如我在评论中指出的那样,
位字段是C标准中令人生厌的部分。他们行为的大多数方面都是实现定义的。特别是,单元中不同字段的映射是实现定义的,因此
opcode
字段是占据最高6位还是最低6位是实现定义。
请参见C11 §6.7.2.1 Structure and union specifiers,尤其是¶10之后。
C标准没有规定位域的布局;它只是说实现必须记录它的工作。如果您发现当opcode
列在第一位时,它的有效位最低,那么就去吧。那就是您的编译器所做的。如果您想以最高有效位来使用它,则可能需要将其移至结构的另一端(并且还需要反转其他字段的顺序)。所有这些都依赖于编译器-尽管编译器可能符合平台ABI。例如,请参见Implementation defined behaviour: Structures, unions, enumerations, and bit-fields上的GCC文档。 GCC在某些地方引用(并顺应)平台ABI。您可以通过Google找到ABI信息-您发现的信息不一定很易读,但是信息在那里。
以下是一些基于您的结构的代码(以及一些二进制数字格式的代码):
#include <stdio.h>
#include <assert.h>
static
void format_binary8v(unsigned char x, int n, char buffer[static 9])
{
assert(n > 0 && n <= 8);
int start = 1 << (n - 1);
for (int b = start; b != 0; b /= 2)
{
*buffer++ = ((b & x) != 0) ? '1' : '0';
x &= ~b;
}
*buffer = '\0';
}
static
void format_binary32(unsigned int x, char buffer[static 33])
{
for (unsigned b = 2147483648; b != 0; b /= 2)
{
*buffer++ = ((b & x) != 0) ? '1' : '0';
x &= ~b;
}
*buffer = '\0';
}
struct R
{
unsigned int opcode : 6;
unsigned int rs : 5;
unsigned int rt : 5;
unsigned int rd : 5;
unsigned int shamt : 5;
unsigned int funct : 6;
};
static void dump_R(const char *tag, struct R r)
{
union X
{
struct R r;
unsigned int i;
};
printf("%s:\n", tag);
union X x = { .r = r };
char buffer[33];
format_binary32(x.i, buffer);
printf("Binary: %s\n", buffer);
format_binary8v(x.r.opcode, 6, buffer);
printf(" - opcode: %s\n", buffer);
format_binary8v(x.r.rs, 5, buffer);
printf(" - rs: %s\n", buffer);
format_binary8v(x.r.rt, 5, buffer);
printf(" - rt: %s\n", buffer);
format_binary8v(x.r.rd, 5, buffer);
printf(" - rd: %s\n", buffer);
format_binary8v(x.r.shamt, 5, buffer);
printf(" - shamt: %s\n", buffer);
format_binary8v(x.r.funct, 6, buffer);
printf(" - funct: %s\n", buffer);
}
int main(void)
{
char filename[] = "filename.bin";
FILE *fp = fopen(filename, "w+b");
if (fp == NULL)
{
fprintf(stderr, "failed to open file '%s' for reading and writing\n", filename);
return 1;
}
//struct R test = {32, 0, 11, 21, 19, 0};
struct R test = { 32, 7, 11, 21, 19, 3 };
fwrite(&test, sizeof(test), 1, fp);
dump_R("test - after write", test);
rewind(fp);
fread(&test, sizeof(test), 1, fp);
dump_R("test - after read", test);
fclose(fp);
return 0;
}
在运行带有GCC 9.1.0的macOS 10.14.5 Mojave的MacBook Pro上运行时,我得到:
test - after write:
Binary: 00001110011101010101100111100000
- opcode: 100000
- rs: 00111
- rt: 01011
- rd: 10101
- shamt: 10011
- funct: 000011
test - after read:
Binary: 00001110011101010101100111100000
- opcode: 100000
- rs: 00111
- rt: 01011
- rd: 10101
- shamt: 10011
- funct: 000011
以及原始二进制输出文件:
$ xxd -b filename.bin
00000000: 11100000 01011001 01110101 00001110 .Yu.
$
我的解释是,在我的机器上,opcode
位字段的数据位于存储单元的最低6位中,funct
位字段的数据位于存储单元中的最低位6位有效位,其他元素在中间。当查看32位值时,这一点很明显。 xxd -b
拆分方式需要更多说明:
opcode
的所有6位;它的最高有效位也包含rs
的两个最低有效位。rs
的三个最高有效位作为其最低有效位,以及rt
中的所有5个比特作为其最高有效位。rd
的所有5位,而最高有效位包含shamt
的3个最低有效位。shamt
的2个最高有效位,在其最高有效位中包含funct
的所有6位。这真让人难以置信!
当我恢复为test
结构(struct R test = {32, 0, 11, 21, 19, 0};
)的值时,我得到:
test - after write:
Binary: 00000010011101010101100000100000
- opcode: 100000
- rs: 00000
- rt: 01011
- rd: 10101
- shamt: 10011
- funct: 000000
test - after read:
Binary: 00000010011101010101100000100000
- opcode: 100000
- rs: 00000
- rt: 01011
- rd: 10101
- shamt: 10011
- funct: 000000
和
00000000: 00100000 01011000 01110101 00000010 Xu.
您的硬件和/或编译器与我的不同;对于位域的布局可能有不同的规则。
请注意,此代码假设未经测试unsigned
或unsigned int
是32位数字。如果您使用的系统不成立,则需要修改代码以使用uint32_t
中的uint8_t
和<stdint.h>
等类型(和格式说明符(如<inttypes.h>
所示)。
与原始代码相比,该代码在各种方式上都有更好的组织。
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct R
{
unsigned int opcode : 6;
unsigned int rs : 5;
unsigned int rt : 5;
unsigned int rd : 5;
unsigned int shamt : 5;
unsigned int funct : 6;
};
static void test_r(const char *tag, struct R r, FILE *fp);
static void run_xxd(const char *file);
int main(void)
{
char filename[] = "filename.bin";
FILE *fp = fopen(filename, "w+b");
if (fp == NULL)
{
fprintf(stderr, "failed to open file '%s' for reading and writing\n", filename);
return 1;
}
struct R r[] =
{
{ 32, 0, 11, 21, 19, 0 },
{ 32, 7, 11, 21, 19, 3 },
{ 6, 21, 10, 14, 10, 8 },
};
enum { NUM_R = sizeof(r) / sizeof(r[0]) };
for (int i = 0; i < NUM_R; i++)
{
char name[16];
snprintf(name, sizeof(name), "r%d", i+1);
test_r(name, r[i], fp);
}
fclose(fp);
run_xxd(filename);
return 0;
}
static void run_one_xxd(const char *command, const char *filename)
{
char cmd[256];
snprintf(cmd, sizeof(cmd), "%s %s", command, filename);
printf("\nCommand: %s\n", cmd);
fflush(stdout);
system(cmd);
putchar('\n');
}
static void run_xxd(const char *filename)
{
run_one_xxd("xxd -c 4 -b ", filename);
run_one_xxd("xxd -c 4 -g 1 -u", filename);
}
static void format_binary8v(unsigned char x, int n, char buffer[static 9]);
static void format_binary32(unsigned x, char buffer[static 33]);
static void dump_bitfield(int nbits, unsigned value, const char *name);
static void dump_bytes(const char *tag, struct R r);
static void dump_R(const char *tag, struct R r);
static void test_r(const char *tag, struct R r, FILE *fp)
{
char buffer[32];
long offset = sizeof(struct R);
putchar('\n');
fwrite(&r, sizeof(r), 1, fp);
snprintf(buffer, sizeof(buffer), "%s - after write", tag);
dump_R(buffer, r);
fseek(fp, -offset, SEEK_CUR);
struct R s;
fread(&s, sizeof(s), 1, fp);
fseek(fp, 0, SEEK_CUR); // Ready for reading or writing!
snprintf(buffer, sizeof(buffer), "%s - after read", tag);
dump_R(buffer, s);
/* Safe regardless of whether struct R uses all bits in its storage unit */
assert(r.opcode == s.opcode);
assert(r.rs == s.rs );
assert(r.rs == s.rs );
assert(r.rs == s.rs );
assert(r.shamt == s.shamt );
assert(r.funct == s.funct );
/* Only safe because struct R uses all bits of its storage unit */
assert(memcmp(&r, &s, sizeof(struct R)) == 0);
}
static void dump_R(const char *tag, struct R r)
{
printf("%s:\n", tag);
dump_bytes("Binary", r);
dump_bitfield(6, r.opcode, "opcode");
dump_bitfield(5, r.rs, "rs");
dump_bitfield(5, r.rt, "rt");
dump_bitfield(5, r.rd, "rd");
dump_bitfield(5, r.shamt, "shamt");
dump_bitfield(6, r.funct, "funct");
}
static void dump_bytes(const char *tag, struct R r)
{
union X
{
struct R r;
unsigned i;
};
union X x = { .r = r };
char buffer[33];
printf("%s: 0x%.8X\n", tag, x.i);
format_binary32(x.i, buffer);
//printf("%s: MSB %s LSB\n", tag, buffer);
printf("%s: MSB", tag);
for (int i = 0; i < 4; i++)
printf(" %.8s", &buffer[8 * i]);
puts(" LSB (big-endian)");
printf("%s: LSB", tag);
for (int i = 0; i < 4; i++)
printf(" %.8s", &buffer[8 * (3 - i)]);
puts(" MSB (little-endian)");
}
static void dump_bitfield(int nbits, unsigned value, const char *name)
{
assert(nbits > 0 && nbits <= 32);
char vbuffer[33];
char nbuffer[8];
snprintf(nbuffer, sizeof(nbuffer), "%s:", name);
format_binary8v(value, nbits, vbuffer);
printf(" - %-7s %6s (%u)\n", nbuffer, vbuffer, value);
}
static
void format_binary8v(unsigned char x, int n, char buffer[static 9])
{
assert(n > 0 && n <= 8);
int start = 1 << (n - 1);
for (int b = start; b != 0; b /= 2)
{
*buffer++ = ((b & x) != 0) ? '1' : '0';
x &= ~b;
}
*buffer = '\0';
}
static
void format_binary32(unsigned x, char buffer[static 33])
{
for (unsigned b = 2147483648; b != 0; b /= 2)
{
*buffer++ = ((b & x) != 0) ? '1' : '0';
x &= ~b;
}
*buffer = '\0';
}
它产生输出:
r1 - after write:
Binary: 0x02755820
Binary: MSB 00000010 01110101 01011000 00100000 LSB (big-endian)
Binary: LSB 00100000 01011000 01110101 00000010 MSB (little-endian)
- opcode: 100000 (32)
- rs: 00000 (0)
- rt: 01011 (11)
- rd: 10101 (21)
- shamt: 10011 (19)
- funct: 000000 (0)
r1 - after read:
Binary: 0x02755820
Binary: MSB 00000010 01110101 01011000 00100000 LSB (big-endian)
Binary: LSB 00100000 01011000 01110101 00000010 MSB (little-endian)
- opcode: 100000 (32)
- rs: 00000 (0)
- rt: 01011 (11)
- rd: 10101 (21)
- shamt: 10011 (19)
- funct: 000000 (0)
r2 - after write:
Binary: 0x0E7559E0
Binary: MSB 00001110 01110101 01011001 11100000 LSB (big-endian)
Binary: LSB 11100000 01011001 01110101 00001110 MSB (little-endian)
- opcode: 100000 (32)
- rs: 00111 (7)
- rt: 01011 (11)
- rd: 10101 (21)
- shamt: 10011 (19)
- funct: 000011 (3)
r2 - after read:
Binary: 0x0E7559E0
Binary: MSB 00001110 01110101 01011001 11100000 LSB (big-endian)
Binary: LSB 11100000 01011001 01110101 00001110 MSB (little-endian)
- opcode: 100000 (32)
- rs: 00111 (7)
- rt: 01011 (11)
- rd: 10101 (21)
- shamt: 10011 (19)
- funct: 000011 (3)
r3 - after write:
Binary: 0x214E5546
Binary: MSB 00100001 01001110 01010101 01000110 LSB (big-endian)
Binary: LSB 01000110 01010101 01001110 00100001 MSB (little-endian)
- opcode: 000110 (6)
- rs: 10101 (21)
- rt: 01010 (10)
- rd: 01110 (14)
- shamt: 01010 (10)
- funct: 001000 (8)
r3 - after read:
Binary: 0x214E5546
Binary: MSB 00100001 01001110 01010101 01000110 LSB (big-endian)
Binary: LSB 01000110 01010101 01001110 00100001 MSB (little-endian)
- opcode: 000110 (6)
- rs: 10101 (21)
- rt: 01010 (10)
- rd: 01110 (14)
- shamt: 01010 (10)
- funct: 001000 (8)
Command: xxd -c 4 -b filename.bin
00000000: 00100000 01011000 01110101 00000010 Xu.
00000004: 11100000 01011001 01110101 00001110 .Yu.
00000008: 01000110 01010101 01001110 00100001 FUN!
Command: xxd -c 4 -g 1 -u filename.bin
00000000: 20 58 75 02 Xu.
00000004: E0 59 75 0E .Yu.
00000008: 46 55 4E 21 FUN!
答案 1 :(得分:3)
我已经测试了您的示例,并且得到了预期的结果:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int binpr(unsigned char Byte, FILE *f)
{
char buf[8];
for(int i=0; i<8; i++) buf[i]=(char)(((Byte>>(7-i))&1)+'0');
return (int)+fwrite(buf,1,8,f);
}
struct R{
unsigned int opcode: 6;
unsigned int rs: 5;
unsigned int rt: 5;
unsigned int rd: 5;
unsigned int shamt: 5;
unsigned int funct: 6;
};
int main()
{
struct R test = {32,0,11,21,19,0};
system(": > result"); //rb requires that the file already exists
FILE *fp = fopen("./result", "rb+");
if(!fp) return perror("fopen"),1;
if(1!=fwrite(&test,sizeof(test),1,fp)) return perror("fwrite"),1;
rewind(fp);
char buf[sizeof(struct R)];
if(1!=fread(&buf,sizeof(buf),1,fp)) return perror("fread"),1;
fputs(" ",stdout); if(0!=memcmp(buf,&test,sizeof test)) abort();
for(size_t i=0; i<sizeof(test); i++) { binpr(*((unsigned char*)&test+i),stdout); fputs(" ",stdout); } puts("");
system("xxd -b result |cut -d: -f2");
/*OUTPUT:*/
/*00100000 01011000 01110101 00000010 */
/*00100000 01011000 01110101 00000010 Xu.*/
}
请注意,要打开文件进行更新和读取,您需要"rb+"
而不是"rb"
。否则,您会在fwrite
上收到错误消息(因为您没有进行任何错误检查,所以您不会看到它)。
(您的编译器也有可能以一种不寻常的方式放置位域,尽管它可能比错误指定的fopen
标志要少。)