我正在使用matplotlib学习python中的twitter情绪分析。目前,控制台中会显示结果(正数为1,中性为0,负数为-1)。我想使用matplotlib以图形形式显示控制台数据结果。我希望有人可以帮助我使用matplotlib以图形形式显示数据。有人请帮帮我吗? 我的代码在下面列出。
from tweepy import API
from tweepy import Cursor
from tweepy.streaming import StreamListener
from tweepy import OAuthHandler
from tweepy import Stream
from textblob import TextBlob
import twitter_credentials
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import re
## # # TWITTER CLIENT # # # #
class TwitterClient:
def __init__(self, twitter_user=None):
self.auth = TwitterAuthenticator().authenticate_twitter_app()
self.twitter_client = API(self.auth)
self.twitter_user = twitter_user
def get_twitter_client_api(self):
return self.twitter_client
def get_user_timeline_tweets(self, num_tweets):
tweets = []
for tweet in Cursor(self.twitter_client.user_timeline,
id=self.twitter_user).items(num_tweets):
tweets.append(tweet)
return tweets
def get_friend_list(self, num_friends):
friend_list = []
for friend in Cursor(self.twitter_client.friends,
id=self.twitter_user).items(num_friends):
friend_list.append(friend)
return friend_list
def get_home_timeline_tweets(self, num_tweets):
home_timeline_tweets = []
for tweet in Cursor(self.twitter_client.home_timeline,
id=self.twitter_user).items(num_tweets):
home_timeline_tweets.append(tweet)
return home_timeline_tweets
## # # TWITTER AUTHENTICATER # # # #
class TwitterAuthenticator:
def authenticate_twitter_app(self):
auth = OAuthHandler(twitter_credentials.CONSUMER_KEY,
twitter_credentials.CONSUMER_SECRET)
auth.set_access_token(twitter_credentials.ACCESS_TOKEN,
twitter_credentials.ACCESS_TOKEN_SECRET)
return auth
## # # TWITTER STREAMER # # # #
class TwitterStreamer:
"""
Class for streaming and processing live tweets.
"""
def __init__(self):
self.twitter_autenticator = TwitterAuthenticator()
def stream_tweets(self, fetched_tweets_filename, hash_tag_list):
# This handles Twitter authetification and the connection to Twitter Streaming API
listener = TwitterListener(fetched_tweets_filename)
auth = self.twitter_autenticator.authenticate_twitter_app()
stream = Stream(auth, listener)
# This line filter Twitter Streams to capture data by the keywords:
stream.filter(track=hash_tag_list)
## # # TWITTER STREAM LISTENER # # # #
class TwitterListener(StreamListener):
"""
This is a basic listener that just prints received tweets to stdout.
"""
def __init__(self, fetched_tweets_filename):
self.fetched_tweets_filename = fetched_tweets_filename
def on_data(self, data):
try:
print data
with open(self.fetched_tweets_filename, 'a') as tf:
tf.write(data)
return True
except BaseException, e:
print 'Error on_data %s' % str(e)
return True
def on_error(self, status):
if status == 420:
# Returning False on_data method in case rate limit occurs.
return False
print status
class TweetAnalyzer:
"""
Functionality for analyzing and categorizing content from tweets.
"""
def clean_tweet(self, tweet):
return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)"
, ' ', tweet).split())
def analyze_sentiment(self, tweet):
analysis = TextBlob(self.clean_tweet(tweet))
if analysis.sentiment.polarity > 0:
return 1
elif analysis.sentiment.polarity == 0:
return 0
else:
return -1
def tweets_to_data_frame(self, tweets):
df = pd.DataFrame(data=[tweet.text for tweet in tweets],
columns=['tweets'])
df['id'] = np.array([tweet.id for tweet in tweets])
df['len'] = np.array([len(tweet.text) for tweet in tweets])
df['date'] = np.array([tweet.created_at for tweet in tweets])
df['source'] = np.array([tweet.source for tweet in tweets])
df['likes'] = np.array([tweet.favorite_count for tweet in
tweets])
df['retweets'] = np.array([tweet.retweet_count for tweet in
tweets])
return df
if __name__ == '__main__':
twitter_client = TwitterClient()
tweet_analyzer = TweetAnalyzer()
api = twitter_client.get_twitter_client_api()
tweets = api.user_timeline(screen_name='realDonaldTrump', count=200)
df = tweet_analyzer.tweets_to_data_frame(tweets)
df['sentiment'] = np.array([tweet_analyzer.analyze_sentiment(tweet)
for tweet in df['tweets']])
print df.head(10)