我正在尝试使用预制的估算器tf.estimator.DNNClassifier
用于MNIST数据集。我从tensorflow_dataset
加载数据集。
我执行以下四个步骤:首先构建数据集管道并定义输入函数:
## Step 1
mnist, info = tfds.load('mnist', with_info=True)
ds_train_orig, ds_test = mnist['train'], mnist['test']
def train_input_fn(dataset, batch_size):
dataset = dataset.map(lambda x:({'image-pixels':tf.reshape(x['image'], (-1,))},
x['label']))
return dataset.shuffle(1000).repeat().batch(batch_size)
然后,在第2步中,我用一个键定义要素列,并将形状定为784:
## Step 2:
image_feature_column = tf.feature_column.numeric_column(key='image-pixels',
shape=(28*28))
image_feature_column
NumericColumn(key='image-pixels', shape=(784,), default_value=None, dtype=tf.float32, normalizer_fn=None)
第3步,我实例化了估算器,如下所示:
## Step 3:
dnn_classifier = tf.estimator.DNNClassifier(
feature_columns=image_feature_column,
hidden_units=[16, 16],
n_classes=10)
最后,通过调用.train()
方法,使用估算器进行第4步:
## Step 4:
dnn_classifier.train(
input_fn=lambda:train_input_fn(ds_train_orig, batch_size=32),
#lambda:iris_data.train_input_fn(train_x, train_y, args.batch_size),
steps=20)
但这会重新出现以下错误。看来问题出在数据集上。
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-21-95736cd65e45> in <module>
2 dnn_classifier.train(
3 input_fn=lambda: train_input_fn(ds_train_orig, batch_size=32),
----> 4 steps=20)
~/anaconda3/envs/tf2.0-beta/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx, accept_symbolic_tensors, accept_composite_tensors)
1183 graph = get_default_graph()
1184 if not graph.building_function:
-> 1185 raise RuntimeError("Attempting to capture an EagerTensor without "
1186 "building a function.")
1187 return graph.capture(value, name=name)
RuntimeError: Attempting to capture an EagerTensor without building a function.
答案 0 :(得分:1)
我认为,如果在input_fn
外部加载tensorflow_datasets数据集,则图形构造会变得很奇怪。我按照TF2.0迁移指南示例进行操作,但不会出现错误。请注意,我尚未测试模型的正确性,您将不得不稍微修改input_fn
逻辑才能获得eval的功能。
# Define the estimator's input_fn
def input_fn():
datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True)
mnist_train, mnist_test = datasets['train'], datasets['test']
dataset = mnist_train
dataset = mnist_train.map(lambda x, y:({'image-pixels':tf.reshape(x, (-1,))},
y))
return dataset.shuffle(1000).repeat().batch(32)
image_feature_column = tf.feature_column.numeric_column(key='image-pixels',
shape=(28*28))
dnn_classifier = tf.estimator.DNNClassifier(
feature_columns=[image_feature_column],
hidden_units=[16, 16],
n_classes=10)
dnn_classifier.train(
input_fn=input_fn,
steps=200)
在这一点上,我收到了一堆弃用警告,但是似乎估算器已经过训练。
答案 1 :(得分:0)
@dgumo的回答是正确的。我只想添加一个基本示例。
输入函数返回的所有张量必须在输入函数内创建。
#Raw data can be outside
data_x = [0.0, 1.0, 2.0, 3.0, 4.0]
data_y = [3.0, 4.9, 7.3, 8.65, 10.75]
def supply_input():
#Tensors must be created inside the function
train_x = tf.constant(data_x)
train_y = tf.constant(data_y)
feature = {
'x': train_x
}
return feature, train_y