我一直在努力使TPU可以用于分类项目。数据集很大,约为150gb,因此我无法将其全部加载到内存中。因此,我一直在使用Dask。 Dask没有直接与tf.Dataset集成,因此我必须创建一个受parallelising tf.data.Dataset.from_generator启发的加载器
将.fit替换为:
iterator = ds.make_one_shot_iterator()
next_element = iterator.get_next()
with tf.Session() as sess:
for i in range(1):
val = sess.run(next_element)
print(val)
测试代码:
tf.keras.backend.clear_session()
N_chunk_generators=64
batch_size=128
chunk_size=8
def gen(chunk):
for ibatch in range(chunk*chunk_size, (chunk+1)*chunk_size):
yield (X[ibatch*(batch_size):(ibatch+1)*(batch_size)].compute().astype('float32'),
np.expand_dims(y[ibatch*(batch_size):(ibatch+1)*(batch_size)].compute().astype('float32'), axis=2))
def dataset_for_n(n):
return tf.data.Dataset.from_generator(gen,
(tf.float32, tf.float32),
(tf.TensorShape([None, 1024, 21]), tf.TensorShape([None, 1024,1])),
args=[n]
)
ds = tf.data.Dataset.range(N_chunk_generators).flat_map(dataset_for_n)
ds = ds.prefetch(4 * batch_size).repeat()
def make_model():
input_shape = (sample_length, 21)
model = Sequential([
LSTM(100, input_shape=input_shape, return_sequences=True),
Dense(1,activation='sigmoid')
])
model.compile(
optimizer=tf.train.RMSPropOptimizer(learning_rate=0.01),
loss='binary_crossentropy',
metrics=['acc']
)
return model
TPU_WORKER = 'grpc://' + os.environ['COLAB_TPU_ADDR']
resolver = tf.contrib.cluster_resolver.TPUClusterResolver(TPU_WORKER)
tf.contrib.distribute.initialize_tpu_system(resolver)
strategy = tf.contrib.distribute.TPUStrategy(resolver)
with strategy.scope():
model = make_model()
model.summary()
model.fit(ds, epochs=1, steps_per_epoch=1)
但是当使用.fit和TPU时,会话丢失:
W0615 08:41:46.915936 139858515244928 tpu_strategy_util.py:56] TPU system %s has already been initialized. Reinitializing the TPU can cause previously created variables on TPU to be lost.
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm (LSTM) (None, 1024, 100) 48800
_________________________________________________________________
dense (Dense) (None, 1024, 1) 101
=================================================================
Total params: 48,901
Trainable params: 48,901
Non-trainable params: 0
_________________________________________________________________
---------------------------------------------------------------------------
AbortedError Traceback (most recent call last)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1355 try:
-> 1356 return fn(*args)
1357 except errors.OpError as e:
10 frames
AbortedError: Session 3de99dcb7d452e4f is not found.
During handling of the above exception, another exception occurred:
AbortedError Traceback (most recent call last)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1368 pass
1369 message = error_interpolation.interpolate(message, self._graph)
-> 1370 raise type(e)(node_def, op, message)
1371
1372 def _extend_graph(self):
AbortedError: Session 3de99dcb7d452e4f is not found.
答案 0 :(得分:0)
我想我已经解决了问题,问题是文件位于TPU不支持的本地文件系统中,但是错误消息却很奇怪。
移动到TFRecords可以解决问题:
def parse_tf(proto):
print(proto)
features = {"X": tf.FixedLenFeature([1024*21], tf.float32, default_value=None),
"Y": tf.FixedLenFeature([1024], tf.float32, default_value=None),
"x_shape": tf.FixedLenFeature([2], tf.int64, default_value=None),
"y_shape": tf.FixedLenFeature([1], tf.int64, default_value=None)}
parsed_features = tf.parse_single_example(proto, features)
return tf.reshape(parsed_features["X"], [1024,21]), tf.reshape(parsed_features["Y"], [1024,1])
tfrecords_dataset = tf.data.TFRecordDataset(["gs://BUCKETNAME/test2.tfrecords"])
ds = tfrecords_dataset.map(parse_tf).batch(64)
有关如何从numpy数组生成TFRecord的信息,请参见此要点。
https://gist.github.com/jekoehler/4e8a32187ce233f23d452cb4ee1ab5c8