在本教程here中,作者这样使用GlobalMaxPool1D()
:
from keras.models import Sequential
from keras.layers import Dense, Activation, Embedding, Flatten, GlobalMaxPool1D, Dropout, Conv1D
from keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
from keras.losses import binary_crossentropy
from keras.optimizers import Adam
filter_length = 300
model = Sequential()
model.add(Embedding(max_words, 20, input_length=maxlen))
model.add(Dropout(0.1))
model.add(Conv1D(filter_length, 3, padding='valid', activation='relu', strides=1))
model.add(GlobalMaxPool1D())
model.add(Dense(num_classes))
model.add(Activation('sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['categorical_accuracy'])
model.summary()
callbacks = [
ReduceLROnPlateau(),
EarlyStopping(patience=4),
ModelCheckpoint(filepath='model-conv1d.h5', save_best_only=True)
]
history = model.fit(x_train, y_train,
class_weight=class_weight,
epochs=20,
batch_size=32,
validation_split=0.1,
callbacks=callbacks)
但是,在在线搜索之后,我只能在Keras网站here上找到GlobalMaxPooling1D
。他们是一样的吗?如果没有,功能和用法有什么区别?
答案 0 :(得分:3)
答案 1 :(得分:1)
我要补充说的是,其他图层也可以使用,例如Conv2D == Convolution2D,MaxPooling2D == MaxPool2D。