我的任务是使用Apache Spark分析Kennedy Space Center日志。该代码可以正常工作,但是由于成本高昂,我想摆脱groupBy
操作。
下面的代码收集带有5xx错误代码的请求列表,并对失败的请求进行计数。
我的代码
SparkSession session = SparkSession.builder().master("local").appName(application_name).getOrCreate();
JavaSparkContext jsc = new JavaSparkContext(session.sparkContext());
JavaRDD<LogEntry> input = jsc.textFile(hdfs_connect + args[0])
.map(App::log_entry_extractor)
.filter(Objects::nonNull);
Dataset<Row> dataSet = session.createDataFrame(input, LogEntry.class);
// task 1
dataSet.filter(col("returnCode").between(500, 599))
.groupBy("request")
.count()
.select("request", "count")
// .sort(desc("count"))
.coalesce(1)
.toJavaRDD()
.saveAsTextFile(hdfs_connect + output_folder_task_1);
数据示例
199.72.81.55 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ HTTP/1.0" 200 6245
unicomp6.unicomp.net - - [01/Jul/1995:00:00:06 -0400] "GET /shuttle/countdown/ HTTP/1.0" 200 3985
199.120.110.21 - - [01/Jul/1995:00:00:09 -0400] "GET /shuttle/missions/sts-73/mission-sts-73.html HTTP/1.0" 200 4085
burger.letters.com - - [01/Jul/1995:00:00:11 -0400] "GET /shuttle/countdown/liftoff.html HTTP/1.0" 304 0
199.120.110.21 - - [01/Jul/1995:00:00:11 -0400] "GET /shuttle/missions/sts-73/sts-73-patch-small.gif HTTP/1.0" 200 4179
burger.letters.com - - [01/Jul/1995:00:00:12 -0400] "GET /images/NASA-logosmall.gif HTTP/1.0" 304 0
burger.letters.com - - [01/Jul/1995:00:00:12 -0400] "GET /shuttle/countdown/video/livevideo.gif HTTP/1.0" 200 0
205.212.115.106 - - [01/Jul/1995:00:00:12 -0400] "GET /shuttle/countdown/countdown.html HTTP/1.0" 200 3985
d104.aa.net - - [01/Jul/1995:00:00:13 -0400] "GET /shuttle/countdown/ HTTP/1.0" 200 3985
129.94.144.152 - - [01/Jul/1995:00:00:13 -0400] "GET / HTTP/1.0" 200 7074
答案 0 :(得分:0)
在这种情况下,groupBy
没什么问题-DataFrame / Dataset groupBy behaviour/optimization-也不是可行的选择。
coalesce(1)
在大多数情况下是一种反模式,在最坏的情况下,它可以turn your process into a sequential one
但是,如果您要进行剧烈的合并,例如到numPartitions = 1,这可能会导致您的计算在少于您希望的节点上进行(例如,在numPartitions = 1的情况下为一个节点)。为避免这种情况,您可以调用重新分区。这将增加一个随机播放步骤,但是意味着当前的上游分区将并行执行(无论当前分区是什么)。
考虑将其替换为repartition(1)
或删除所有内容