我正在尝试实现与以下问题类似的东西(Initializing state on dask-distributed workers,Setting up Dask worker with variable),在这里我有一个(相对)较大的模型,我希望对该子集的工人进行预初始化接受需要模型的任务。理想情况下,我甚至不希望客户端计算机具有该模型。
在发现这些问题之前,我的最初尝试是在共享模块delayed
中定义一个worker_task.model
任务,并在worker中分配一个模块全局变量(例如worker_tasks.model.model
) '--preload
脚本供该任务使用;但是,由于某些原因,此操作不起作用-在预加载脚本中设置了变量,但是在调用任务时仍为None
。
init_model_worker.py:
import logging
from uuid import uuid4
from worker_tasks import model
def dask_setup(worker):
model.model = f'<mock model {uuid4()}>'
logger = logging.getLogger('distributed')
logger.warning(f'model = {model.model}')
worker_tasks / model.py:
import logging
import random
from time import sleep
from uuid import uuid4
import dask
model = None
@dask.delayed
def compute_clinical(inp):
if model is None:
raise RuntimeError('Model not initialized.')
sleep(random.uniform(3, 17))
return {
'result': random.choice((True, False)),
'confidence': random.uniform(0, 1)
}
这是我启动它并将其提交给调度程序时的工作日志:
> dask-worker --preload init_model_worker.py tcp://scheduler:8786 --name model-worker
distributed.utils - INFO - Reload module init_model_worker from .py file
distributed.nanny - INFO - Start Nanny at: 'tcp://172.28.0.4:41743'
distributed.diskutils - INFO - Found stale lock file and directory '/worker-epptq9sh', purging
distributed.utils - INFO - Reload module init_model_worker from .py file
distributed - WARNING - model = <mock model faa41af0-d925-46ef-91c9-086093d37c71>
distributed.worker - INFO - Start worker at: tcp://172.28.0.4:37973
distributed.worker - INFO - Listening to: tcp://172.28.0.4:37973
distributed.worker - INFO - nanny at: 172.28.0.4:41743
distributed.worker - INFO - bokeh at: 172.28.0.4:37766
distributed.worker - INFO - Waiting to connect to: tcp://scheduler:8786
distributed.worker - INFO - -------------------------------------------------
distributed.worker - INFO - Threads: 4
distributed.worker - INFO - Memory: 1.93 GB
distributed.worker - INFO - Local Directory: /worker-mhozo9ru
distributed.worker - INFO - -------------------------------------------------
distributed.worker - INFO - Registered to: tcp://scheduler:8786
distributed.worker - INFO - -------------------------------------------------
distributed.core - INFO - Starting established connection
distributed.worker - WARNING - Compute Failed
Function: compute_clinical
args: ('mock')
kwargs: {}
Exception: RuntimeError('Model not initialized.')
您可以看到,重新加载预加载脚本后,model
是<mock model faa41af0-d925-46ef-91c9-086093d37c71>
;但是当我尝试从任务中调用它时,我得到了None
。
我将尝试根据其他问题的答案实施解决方案,但我有几个与工人预载有关的问题:
None
模型时会出现问题?--preload
脚本中执行类似的操作?从客户端调用工作程序状态的初始化更好吗? 如果是,为什么?答案 0 :(得分:1)
我怀疑通过Python序列化函数,模型变量会立即绑定到函数中。您可以尝试以下方法:
@dask.delayed
def compute_clinical(inp):
from worker_tasks.model import model
if model is None:
raise RuntimeError('Model not initialized.')
或者,而不是将变量分配给全局模块范围(在Python中可能很难理解),或者尝试将其分配给工作程序本身。
from dask.distributed import get_worker
def dask_setup(worker):
worker.model = f'<mock model {uuid4()}>'
@dask.delayed
def compute_clinical(inp):
if get_worker().model is None:
raise RuntimeError('Model not initialized.')