熊猫:无法创建数据透视表

时间:2019-06-12 15:30:56

标签: python pandas

这是一个数据框:

    test_num  file_num    dose  is_anneal  test_name  fail
0         10         0    0.00      False    test1       
1         10         1   10.42      False    test1       
2         10         2   34.34      False    test1       
3         10         3   57.06      False    test1       
4         10         4  103.45      False    test1       
5         10         5  200.69      False    test1       
6         10         6  300.24      False    test1     8↑
7         11         0    0.00      False    test2       
8         11         1   10.42      False    test2       
9         11         2   34.34      False    test2       
10        11         3   57.06      False    test2     2↑
11        11         4  103.45      False    test2     2↑
12        11         5  200.69      False    test2     2↑
13        11         6  300.24      False    test2  2↑,8↑

我想制作一个数据透视表,以便test_numtest_name都可以出现:

fail_data_pivot = fd.pivot(columns='dose', index=['test_num', 'test_name'], values='fail')

>>ValueError: Wrong number of items passed 14, placement implies 2

fail_data_pivot = fd.pivot_table(columns='dose', index=['test_num', 'test_name'], values='fail')

>>pandas.core.base.DataError: No numeric types to aggregate

如果我只留下test_num,那么它会起作用:

fail_data_pivot = fd.pivot(columns='dose', index='test_num', values='fail')
print(fail_data_pivot)

dose     0.00   10.42  34.34  57.06  103.45 200.69 300.24
test_num                                                 
10                                                     8↑
11                                2↑     2↑     2↑  2↑,8↑

这是我想要的:

dose                   0.00   10.42  34.34  57.06  103.45 200.69 300.24
test_num  test_name                                               
10        test1                                                     8↑
11        test2                                2↑     2↑     2↑  2↑,8↑

如何制作具有多个索引的数据透视表?

1 个答案:

答案 0 :(得分:1)

正如我所说,您可以使用>>> from ecc import curves >>> curve = curves.P256() >>> pkey = 0x00c3f7c39a9be2418cd89a732e40d648b09fa0af9e909a4fb6864910144b5cbcdf >>> s1 = c.sign(b'Hello', pkey) (37527198291707833181859423619289327687028014812888685671525882103189540525356,7717531609084222009133798505588038563850333231389727023073200992747312618427) >>> s2 = c.sign(b'Hello', pkey) (55880701658034823360120047989457771316451459626784083177171213563603884569397,88917360761747520665103257272757357544674490240888454865713640275762122369837) >>> s1 == s2 False

pivot_table