如何使此for循环在每次迭代中显示一个图?

时间:2019-06-12 01:05:24

标签: matlab matrix matlab-figure linear-algebra

总体思路
我一直在从事线性代数项目,该项目的目的是测试给定的向量集(矩阵)是否线性dependent/independent。为此,下一个程序将接收一个名为值的矩阵(用户输入/ MxN),并首先通过该标准(该部分没有问题),然后向量是线性依赖的,则必须测试内部向量之间是否存在某些LI / LD子集,为此开始迭代行的排列并为其确定条件,如果这导致LI子集,则必须绘制向量以及向量形成的空间。即使初始矩阵的大小为MxN,通常也希望该矩阵为2或3列(R2或R3)。

问题
在第二遍中,一旦系统被标记为线性相关,则系统将图形重叠在相同的窗口中,所需的输出将是进行第一遍,如果系统是LD,则显示初始图,然后以单独的方式开始绘制图窗口形成的置换矩阵的图。

NewMatrix遍历原始“值”矩阵,并继续形成行/向量的排列以再次检查条件(它确实在同一窗口中)。请注意,初始矩阵“值”是由用户定义的,应该已经在显示的代码的起点输入了。

代码

RangS=rank(R)  //LI or ld criterion
[r, c] = size(value)
       if (rank(value))==r
            set(handles.text3,'String',('System>LI'));
            figure(3);
            hold on;
            z = zeros(size(value, 1), 1);
            quiver3(z, z, z, value(:, 1), value(:, 2), z, 0);
            grid on
            view(45, 45);
            s=sum(value);
            quiver3(0,0,0,s(1),s(2),0,'r');
            points=[X' Y'];


       else
           set(handles.text3,'String',('System>LD'));
           figure(3); //this graph should be done apart
           hold on;
           z = zeros(size(value, 1), 1);
           quiver3(z, z, z, value(:, 1), value(:, 2), z, 0);
           grid on
           view(45, 45);
           points=[X' Y'];
           for jj = 1:size(value,1)-1 //here starts permuting vectors>credits to MikeLimaOscar

                     for kk = jj+1:size(value,1)
                           NewMatrix= value([jj,kk],:)
                                F=rref(NewMatrix);
                                RangS=rank(R)  //the same criterion applied to the permutated matrices
                                [r, c] = size(NewMatrix)
                                if (rank(NewMatrix))==r
                                    set(handles.text3,'String',('Subsystem :LI'));
                                        figure(3); there  should be one graph for every permutated matrix
                                        hold on;
                                        z = zeros(size(NewMatrix, 1), 1);
                                        quiver3(z, z, z, NewMatrix(:, 1), NewMatrix(:, 2), z, 0);
                                        grid on
                                        view(45, 45);
                                        s=sum(NewMatrix);
                                        quiver3(0,0,0,s(1),s(2),0,'r');
                                        points=[X' Y'];


                               else
                                   set(handles.text3,'String',('Subsystem:LD'));
                                   figure(3);
                                   hold on;
                                   z = zeros(size(NewMatrix, 1), 1);
                                   quiver3(z, z, z, NewMatrix(:, 1), NewMatrix(:, 2), z, 0);
                                   grid on
                                   view(45, 45);
                                   points=[X' Y'];

                                end

                    end


end
       end     

1 个答案:

答案 0 :(得分:1)

  • 您正在将所有图形绘制在同一窗口[figure(3)]上。
  • 为图形提供不同的参数可以解决问题。

每个窗口的特定索引

Permutation(jj) |Permutation 1   | Permutation 2   |  Permutation 3
____________________________________________________________________
                |[1]submatrix 1  | [4]submatrix 1  |[6]submatrix 1
submatrix(kk)   |[2]submatrix 2  | [5]submatrix 2  |[7]submatrix 2
                |[3]submatrix 3  |                 |[8]submatrix 3
                |                |                 |[9]submatrix 4
____________________________________________________________________
Last index      |     3          |       5         |     9       
____________________________________________________________________

括号中的索引将用作图形参数

  • Permutation 1,只需使用子矩阵索引kkindex_1 = kk
  • Permutation 2,使用子矩阵索引kk和置换Last index中的1子矩阵
index_2 = Last index(Permutation 1) + kk
  • Permutation 3,使用子矩阵索引kk和置换Last index中的2子矩阵
index_3 = Last index(Permutation 2) + kk

泛化,是第一个排列的一部分,第n个排列中的索引是

index_n = Last index(Permutation n-1)) + kk

对于给定total of submatrices的给定问题Permutation jj可以计算为

total(Permutation jj) = numel(jj+1:size(value,1))

请仔细阅读评论

% Check if the entire matrix is linear independent or not
if LI

    % Linear independent 
    % Plot the graph in window #1
    figure(1)

else 

    % Linear dependent 
    % Plot the graph in window #1
    figure(1) 

    % Starting index for next Permutation
    Last_index = 0;

    % Figure() argument initialization
    index = 0;

    % Permutation begins here
    for jj =  1:size(value,1)-1

        % submatrices for a given permutation jj begins here
        for kk = jj+1:size(value,1)

            % Check if submatrix is linear independent or not 
            if submatrix(kk) from permutation (jj) is LI

                % Linear independent 
                % Plot the graph in window #index
                index = Last_index + kk
                figure(index)

            else

                % Linear dependent 
                % Plot the graph in window #index
                index = Last_index + kk
                figure(index)

            end
            % End of checking if submatrix is linear independent or not 
        end

        % Update last index for the next permutation starting index
        Last_index = Last_index + numel(jj+1:size(value,1))

        % End of submatrices for a given permutation jj 

    end 
    % End of Permutation 
end
% End of checking if the entire matrix is linear independent or not