特征值:比较两个稀疏矩阵的稀疏模式可能不同

时间:2019-06-11 14:02:39

标签: c++ sparse-matrix eigen eigen3

我想比较两个Eigen::SparseMatrix

有一种res.isApprox(ans)方法,但是据我所知,不幸的是,如果使用不同的稀疏模式,它会因断言而失败

AffineInvariantDeformerTest01: Eigen/src/SparseCore/SparseMatrix.h:934: void Eigen::internal::set_from_triplets(const InputIterator&, const InputIterator&, SparseMatrixType&, DupFunctor) [with InputIterator = __gnu_cxx::__normal_iterator<Eigen::Triplet<double, int>*, std::vector<Eigen::Triplet<double, int>, std::allocator<Eigen::Triplet<double, int> > > >; SparseMatrixType = Eigen::SparseMatrix<double, 0, int>; DupFunctor = Eigen::internal::scalar_sum_op<double, double>]: Assertion `it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols()' failed.

我希望将其用于单元测试,因此可以确定是否很快。也许我可以将稀疏矩阵转换为稠密矩阵,但我希望有更优雅的解决方案

编辑: 对于我来说,只有一种可以比较两个矩阵的稀疏模式的方法也是可以的

1 个答案:

答案 0 :(得分:1)

首先,即使使用不同的稀疏模式,isApprox()也可以正常工作。看来您的错误在其他地方(使用setFromTriplets()设置矩阵时可能已经存在)

当给定两个具有不同稀疏模式的矩阵时,如果不同的条目(几乎)为零,则它们将被视为近似相等。以下代码应两次计算true(增加1e-19可以看到差异):

#include <Eigen/SparseCore>
#include <iostream>
#include <array>

int main() {
    Eigen::SparseMatrix<double> Mat1(2,2), Mat2(2,2);

    std::array<Eigen::Triplet<double,int>, 2> data1  {{{0,0,1.0}, {1,1, 1e-19}}};
    std::array<Eigen::Triplet<double,int>, 2> data2  {{{0,0,1.0}, {1,0, 1e-19}}};

    Mat1.setFromTriplets(data1.begin(), data1.end());
    Mat2.setFromTriplets(data2.begin(), data2.end());

    std::cout << "Mat1.isApprox(Mat1) == " << Mat1.isApprox(Mat1) << "\nMat1.isApprox(Mat2) == " << Mat1.isApprox(Mat2) << "\n";
}

如果要比较稀疏性模式,可以检查从内部和外部索引指针开始的数据(两者都使用Map)。如果两个矩阵具有相同的类型并被压缩,则可以进行以下操作:

template<class Derived>
bool hasSamePattern(Eigen::SparseCompressedBase<Derived> const& A, Eigen::SparseCompressedBase<Derived> const& B)
{
    assert(A.isCompressed() && B.isCompressed());
    if(A.rows() != B.rows() || A.cols() != B.cols() || A.nonZeros() != B.nonZeros())
        return false;
    typedef Eigen::Matrix<typename Derived::StorageIndex, Eigen::Dynamic, 1> IndexVector;
    Eigen::Index outerSize = A.outerSize(), nnz = A.nonZeros();
    if(IndexVector::Map(A.outerIndexPtr(), outerSize) != IndexVector::Map(B.outerIndexPtr(), outerSize))
        return false;
    if(IndexVector::Map(A.innerIndexPtr(), nnz) != IndexVector::Map(B.innerIndexPtr(), nnz))
        return false;

    return true;
}