我正在尝试编写一个行为如下的函数,但它证明非常困难:
DF <- data.frame(x = seq(1,10), y = rep(c('a','b','c','d','e'),2))
> DF
x y
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
6 6 a
7 7 b
8 8 c
9 9 d
10 10 e
>OverLapSplit(DF,nsplits=2,overlap=2)
[[1]]
x y
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
6 6 a
[[2]]
x y
1 5 a
2 6 b
3 7 c
4 8 d
5 9 e
6 10 a
>OverLapSplit(DF,nsplits=1)
[[1]]
x y
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
6 6 a
7 7 b
8 8 c
9 9 d
10 10 e
>OverLapSplit(DF,nsplits=2,overlap=4)
[[1]]
x y
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
6 6 a
7 7 b
[[2]]
x y
1 4 e
2 5 a
3 6 b
4 7 c
5 8 d
6 9 e
7 10 a
>OverLapSplit(DF,nsplits=5,overlap=1)
[[1]]
x y
1 1 a
2 2 b
3 3 c
[[2]]
x y
1 3 c
2 4 d
3 5 e
[[3]]
x y
1 5 e
2 6 a
3 7 b
[[4]]
x y
1 7 b
2 8 c
3 9 d
[[5]]
x y
1 8 d
2 9 e
3 10 f
如果您尝试OverLapSplit(DF,nsplits=2,overlap=1)
可能如下:
[[1]]
x y
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
[[2]]
x y
1 5 a
2 6 b
3 7 c
4 8 d
5 9 e
6 10 a
谢谢!
答案 0 :(得分:7)
尝试类似:
OverlapSplit <- function(x,nsplit=1,overlap=2){
nrows <- NROW(x)
nperdf <- ceiling( (nrows + overlap*nsplit) / (nsplit+1) )
start <- seq(1, nsplit*(nperdf-overlap)+1, by= nperdf-overlap )
if( start[nsplit+1] + nperdf != nrows )
warning("Returning an incomplete dataframe.")
lapply(start, function(i) x[c(i:(i+nperdf-1)),])
}
用nsplit分割的数量! (nsplit = 1返回2个数据帧)。如果重叠拆分不真正适合数据帧,这将呈现不完整的最后一个数据帧,并发出警告。
> OverlapSplit(DF,nsplit=3,overlap=2)
[[1]]
x y
1 1 a
2 2 b
3 3 c
4 4 d
[[2]]
x y
3 3 c
4 4 d
5 5 e
6 6 a
[[3]]
x y
5 5 e
6 6 a
7 7 b
8 8 c
[[4]]
x y
7 7 b
8 8 c
9 9 d
10 10 e
一个有警告的人
> OverlapSplit(DF,nsplit=1,overlap=1)
[[1]]
x y
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
6 6 a
[[2]]
x y
6 6 a
7 7 b
8 8 c
9 9 d
10 10 e
NA NA <NA>
Warning message:
In OverlapSplit(DF, nsplit = 1, overlap = 1) :
Returning an incomplete dataframe.
答案 1 :(得分:4)
这使用莱迪思图形中的木瓦理念,因此利用包lattice
中的代码生成间隔,然后使用循环将原始DF分解为正确的子集。
我不确定overlap = 1
是什么意思 - 我认为你的意思是1个样本/观察重叠。如果是这样,下面的代码就是这样做的。
OverlapSplit <- function(x, nsplits = 1, overlap = 0) {
stopifnot(require(lattice))
N <- seq_len(nr <- nrow(x))
interv <- co.intervals(N, nsplits, overlap / nr)
out <- vector(mode = "list", length = nrow(interv))
for(i in seq_along(out)) {
out[[i]] <- x[interv[i,1] < N & N < interv[i,2], , drop = FALSE]
}
out
}
给出了:
> OverlapSplit(DF, 2, 2)
[[1]]
x y
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
6 6 a
[[2]]
x y
5 5 e
6 6 a
7 7 b
8 8 c
9 9 d
10 10 e
> OverlapSplit(DF)
[[1]]
x y
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
6 6 a
7 7 b
8 8 c
9 9 d
10 10 e
> OverlapSplit(DF, 4, 1)
[[1]]
x y
1 1 a
2 2 b
3 3 c
[[2]]
x y
3 3 c
4 4 d
5 5 e
[[3]]
x y
6 6 a
7 7 b
8 8 c
[[4]]
x y
8 8 c
9 9 d
10 10 e
答案 2 :(得分:0)
只是为了清楚我在这里做了什么:
#Load Libraries
library(PerformanceAnalytics)
library(quantmod)
#Function to Split Data Frame
OverlapSplit <- function(x,nsplit=1,overlap=0){
nrows <- NROW(x)
nperdf <- ceiling( (nrows + overlap*nsplit) / (nsplit+1) )
start <- seq(1, nsplit*(nperdf-overlap)+1, by= nperdf-overlap )
if( start[nsplit+1] + nperdf != nrows )
warning("Returning an incomplete dataframe.")
lapply(start, function(i) x[c(i:(i+nperdf-1)),])
}
#Function to run regression on 30 days to predict the next day
FL <- as.formula(Next(HAM1)~HAM1+HAM2+HAM3+HAM4)
MyRegression <- function(df,FL) {
df <- as.data.frame(df)
model <- lm(FL,data=df[1:30,])
predict(model,newdata=df[31,])
}
#Function to roll the regression
RollMyRegression <- function(data,ModelFUN,FL) {
rollapply(data, width=31,FUN=ModelFUN,FL,
by.column = FALSE, align = "right", na.pad = FALSE)
}
#Load Data
data(managers)
#Split Dataset
split.data <- OverlapSplit(managers,2,30)
sapply(split.data,dim)
#Run rolling regression on each split
output <- lapply(split.data,RollMyRegression,MyRegression,FL)
output
unlist(output)
通过这种方式,您可以使用并行版本的lapply替换lapply
,并稍微提高您的速度。
当然,考虑到处理器的数量和数据集的大小,现在存在优化分割/重叠的问题。