预期的conv2d_input具有shape(1,1)的4个维度

时间:2019-06-10 18:31:37

标签: python tensorflow

在适应机器学习之后,我正在尝试预测一个新的机器学习。名为demo1.jpg的图片

我期望将新功能添加到库中

我的详细信息:

RTX 2080
Tensorflow 1.13.1
Cuda 10.0

我正在使用tf.keras,并且遇到以下错误:

  

ValueError:检查输入时出错:预期conv2d_input具有4   尺寸,但数组的形状为(1,1)

我的完整代码:

import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"

import tensorflow as tf
import numpy as np
import pickle
import cv2
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
from tensorflow import keras

IMG_SIZE = 50

def prepare(file):
    img_array = cv2.imread(file, cv2.IMREAD_GRAYSCALE)
    new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))

    predictdata = tf.reshape(new_array, (1, 50, 50))
    predictdata = np.expand_dims(predictdata, -1)
    return predictdata


pickle_ind = open("x.pickle", "rb")
x = pickle.load(pickle_ind)
x = np.array(x, dtype=float)
x = np.expand_dims(x, -1)

pickle_ind = open("y.pickle", "rb")
y = pickle.load(pickle_ind)

n_batch = len(x)

model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(50, 50, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(1, activation='softmax'))

model.summary()

model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy'])

model.fit(x, y, epochs=1, batch_size=n_batch)
prediction = model.predict([prepare('demo1.jpg')], batch_size=n_batch, steps=1, verbose=1)

print(prediction)

1 个答案:

答案 0 :(得分:1)

执行以下更改:

def prepare(file):
    img_array = cv2.imread(file, cv2.IMREAD_GRAYSCALE)
    return np.expand_dims(cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)), -1)

model.fit(x, y, epochs=1, batch_size=n_batch)
model.predict(np.array([prepare("demo1.jpg")]), batch_size=n_batch, steps=1, verbose=1)

问题: tf.reshape返回一个张量而不是一个numpy数组。然后expand_dims添加一个维度并返回单个元素np数组(该元素为张量)。

而是将图像返回为3D np数组,然后创建一批图像进行预测。