如何在pyspark中使用Graphframes或igraph或networx查找顶点的成员

时间:2019-06-10 09:05:59

标签: pyspark networkx igraph spark-graphx graphframes

我的输入数据框是df

    valx      valy 
1: 600060     09283744
2: 600131     96733110 
3: 600194     01700001

我想创建图,将上面两列作为边列表处理,然后我的输出应包含图的所有顶点及其成员资格的列表。

我也尝试在pyspark和networx库中使用Graphframe,但是没有得到想要的结果

我的输出应如下图所示(基本上是V1下的所有valx和valy(作为顶点)以及V2下的所有成员信息)

V1               V2
600060           1
96733110         1
01700001         3

我在下面尝试过

import networkx as nx
import pandas as pd

filelocation = r'Pathtodataframe df csv'

Panda_edgelist = pd.read_csv(filelocation)

g = nx.from_pandas_edgelist(Panda_edgelist,'valx','valy')
g2 = g.to_undirected(g)
list(g.nodes)
``

1 个答案:

答案 0 :(得分:1)

我不确定您是否通过询问相同的问题two times违反这里的任何规则。

要检测带有图框的社区,首先必须创建一个图框对象。给您的示例数据帧以下代码片段向您展示必要的转换:

from graphframes import *

sc.setCheckpointDir("/tmp/connectedComponents")


l = [
(  '600060'  , '09283744'),
(  '600131'  , '96733110'),
(  '600194'  , '01700001')
]

columns = ['valx', 'valy']

#this is your input dataframe 
edges = spark.createDataFrame(l, columns)

#graphframes requires two dataframes: an edge and a vertice dataframe.
#the edge dataframe has to have at least two columns labeled with src and dst.
edges = edges.withColumnRenamed('valx', 'src').withColumnRenamed('valy', 'dst')
edges.show()

#the vertice dataframe requires at least one column labeled with id
vertices = edges.select('src').union(edges.select('dst')).withColumnRenamed('src', 'id')
vertices.show()

g = GraphFrame(vertices, edges)

输出:

+------+--------+ 
|   src|     dst| 
+------+--------+ 
|600060|09283744| 
|600131|96733110| 
|600194|01700001| 
+------+--------+ 
+--------+ 
|      id| 
+--------+ 
|  600060| 
|  600131| 
|  600194| 
|09283744| 
|96733110| 
|01700001| 
+--------+

您在其他question的评论中写道,社区检测算法目前对您而言并不重要。因此,我将选择connected components

result = g.connectedComponents()
result.show()

输出:

+--------+------------+ 
|      id|   component| 
+--------+------------+ 
|  600060|163208757248| 
|  600131| 34359738368| 
|  600194|884763262976| 
|09283744|163208757248| 
|96733110| 34359738368| 
|01700001|884763262976| 
+--------+------------+

其他社区检测算法(例如LPA)可以在user guide中找到。