收集和存储不断变化的数据以供将来分析

时间:2019-06-08 11:19:45

标签: python database web-scraping

我开发了一种在https://www.insidefutures.com/markets/data.php?page=quote&sym=NG&x=19&y=5下抓取网站的方法

数据每10分钟更新一次,我想找到价格和交易量之间的关系。但是,我需要每10分钟下载一次数据,并将其存储以备将来分析。

在网站更新中,我希望我的代码能够运行并每10分钟下载到数据库中以供将来分析。我该如何实现?

from urllib.request import urlopen
from bs4 import BeautifulSoup
import pandas as pd
import requests
import numpy as np

res = requests.get('https://shared.websol.barchart.com/quotes/quote.php?')

soup = BeautifulSoup(res.text, 'lxml')
soup.prettify()
Header = soup.findAll('tr', limit=2)[1].findAll('th')

column_headers = [th.getText() for th in soup.findAll('tr', limit=2) 
[1].findAll('th')]


data_rows = soup.findAll('tr')[2:]
i = range(len(data_rows))
 # for cell in data_rows
Contracts =[]
Lasts =[]
Changes =[]
Opens = []
Highs =[]
Lows =[]
Volumes=[]
Previous_Settles=[]

for td in data_rows:

   Contract = td.findAll('td')[0].text
   Contracts.append(Contract)

   Last = td.findAll('td')[1].text
   Lasts.append(Last)

   Change = td.findAll('td')[2].text
   Changes.append(Change)

   Open = td.findAll('td')[3].text
   Opens.append(Open)

   High = td.findAll('td')[4].text
   Highs.append(High)

   Low = td.findAll('td')[5].text
   Lows.append(Low)

   Volume = td.findAll('td')[6].text
   Volumes.append(Volume)

   Previous_Settled = td.findAll('td')[7].text
   Previous_Settles.append(Previous_Settled)

   Date_Time = td.findAll('td')[8].text

df = pd.DataFrame({'Contracts' : Contracts, 'Last': Last, 'Change': 
Changes, 'Open':Opens, 'High': Highs, 'low': Lows,'Previous_Settled': 
Previous_Settles})
print(df)

0 个答案:

没有答案