我的样本数据 `
git clone <github_url>
cd <repo_name>
git remote add gitlab <gitlab_url>
git push gitlab <branch_name>
`
我正在尝试按州和地区分组,然后从每年开始计算每月增长率。 p>
每月计算的公式为:(1 + rates * growth_in_year)^(1/12)-1 纠正我的错误
`
structure(list(state = c("AP", "AP"), district = c("krishna",
"guntur"), rate = c(170104.5156, 1343.78134), growth_in_2016 = c(0.3844595,
0.3678), growth_in_2017 = c(0.444595, 0.8445), growth_in_2018 = c(0.323699,
0.36213), growth_in_2019 = c(0.5777, 0.35256), growth_in_2020 = c(0.2669097,
0.9097)), class = c("data.table", "data.frame"), row.names = c(NA,-2L), .internal.selfref = <pointer: 0x00000000026c1ef0>)
,其他地区也是如此。 每个地区的费率必须每年递增。 我想使用日期格式而不是年份格式。
答案 0 :(得分:1)
我们可以先将gather
数据转换为长格式,然后再group_by
state
,district
和year
,找到新的每月rate
,从列名称中提取年份,并创建一个list
的日期(代表整个一年中的最后一天),最后计算rate
的累积总和,以获得每个月的增量值。>
library(dplyr)
library(tidyr)
df %>%
gather(key, value, -(1:3)) %>%
group_by(state, district, key) %>%
mutate(rate = (1 + rate * value)^(1/12) - 1,
year = sub(".*(\\d{4})", "\\1", key),
dates = list(seq(as.Date(paste0(year, "-01-01")),
as.Date(paste0(year, "-12-01")), by = "month")- 1)) %>%
unnest() %>%
mutate(rate = cumsum(rate)) %>%
select(-year)
# state district rate key value dates
# <chr> <chr> <dbl> <chr> <dbl> <date>
# 1 AP krishna 1.52 growth_in_2016 0.384 2015-12-31
# 2 AP krishna 3.04 growth_in_2016 0.384 2016-01-31
# 3 AP krishna 4.56 growth_in_2016 0.384 2016-02-29
# 4 AP krishna 6.08 growth_in_2016 0.384 2016-03-31
# 5 AP krishna 7.60 growth_in_2016 0.384 2016-04-30
# 6 AP krishna 9.12 growth_in_2016 0.384 2016-05-31
# 7 AP krishna 10.6 growth_in_2016 0.384 2016-06-30
# 8 AP krishna 12.2 growth_in_2016 0.384 2016-07-31
# 9 AP krishna 13.7 growth_in_2016 0.384 2016-08-31
#10 AP krishna 15.2 growth_in_2016 0.384 2016-09-30
# … with 110 more rows
数据
df <- structure(list(state = c("AP", "AP"), district = c("krishna",
"guntur"), rate = c(170104.5156, 1343.78134), growth_in_2016 = c(0.3844595,
0.3678), growth_in_2017 = c(0.444595, 0.8445), growth_in_2018 = c(0.323699,
0.36213), growth_in_2019 = c(0.5777, 0.35256), growth_in_2020 = c(0.2669097,
0.9097)), class = c("data.table", "data.frame"), row.names = c(NA, -2L))
答案 1 :(得分:1)
我们可以使用mutate_at
在“增长”列上进行费率计算,然后将gather
转换为“长”格式,从“日期”中删除按“州”,“地区”,获取“值”列的cumsum
library(tidyverse)
out <- df %>%
mutate_at(vars(starts_with('growth')), list(~ (1 + rate * .)^(1/12) - 1)) %>%
gather(date, value, matches("growth")) %>%
mutate(date = str_remove(date, ".*_")) %>%
group_by(state, district) %>%
mutate(value = cumsum(value))
out %>%
filter(district == "krishna")
# A tibble: 5 x 5
# Groups: state, district [1]
# state district rate date value
# <chr> <chr> <dbl> <chr> <dbl>
#1 AP krishna 170105. 2016 1.52
#2 AP krishna 170105. 2017 3.07
#3 AP krishna 170105. 2018 4.55
#4 AP krishna 170105. 2019 6.16
#5 AP krishna 170105. 2020 7.60