Azure语音到文本多语音识别

时间:2019-06-06 15:29:45

标签: python azure speech-to-text microsoft-cognitive

我正在尝试使用Azure的SpeechToText将对话音频文件转录为文本。我利用SKD获得了它,并再次尝试了API(遵循此说明https://github.com/Azure-Samples/cognitive-services-speech-sdk/blob/master/samples/batch/python/python-client/main.py),但我还想通过不同的声音来分割结果文本。有可能吗?

我知道它可以在beta会话服务中使用,但是由于我的音频是西班牙语,所以我无法使用它。是否有按扬声器划分结果的配置?

这是使用SDK进行的调用:

all_results = []
def speech_recognize_continuous_from_file(file_to_transcript):
    """performs continuous speech recognition with input from an audio file"""
    # <SpeechContinuousRecognitionWithFile>
    speech_config = speechsdk.SpeechConfig(subscription=speech_key,
                                           region=service_region,
                                           speech_recognition_language='es-ES')
    audio_config = speechsdk.audio.AudioConfig(filename=file_to_transcribe)

    speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_config)

    done = False

    def stop_cb(evt):
        """callback that stops continuous recognition upon receiving an event `evt`"""
        print('CLOSING on {}'.format(evt))
        speech_recognizer.stop_continuous_recognition()
        nonlocal done
        done = True

    # Connect callbacks to the events fired by the speech recognizer  

    speech_recognizer.recognized.connect(lambda evt: print('RECOGNIZED: {}'.format(evt)))
    speech_recognizer.session_started.connect(lambda evt: print('SESSION STARTED: {}'.format(evt)))
    speech_recognizer.session_stopped.connect(lambda evt: print('SESSION STOPPED {}'.format(evt)))
    speech_recognizer.canceled.connect(lambda evt: print('CANCELED {}'.format(evt)))
    # stop continuous recognition on either session stopped or canceled events
    speech_recognizer.session_stopped.connect(stop_cb)
    speech_recognizer.canceled.connect(stop_cb)

    def handle_final_result(evt):
        all_results.append(evt.result.text)

    speech_recognizer.recognized.connect(handle_final_result)
    # Start continuous speech recognition
    speech_recognizer.start_continuous_recognition()



    while not done:
        time.sleep(.5)
    # </SpeechContinuousRecognitionWithFile>

使用API​​:

from __future__ import print_function
from typing import List

import logging
import sys
import requests
import time
import swagger_client as cris_client


logging.basicConfig(stream=sys.stdout, level=logging.DEBUG, format="%(message)s")

SUBSCRIPTION_KEY = subscription_key

HOST_NAME = "westeurope.cris.ai"
PORT = 443

NAME = "Simple transcription"
DESCRIPTION = "Simple transcription description"

LOCALE = "es-ES"
RECORDINGS_BLOB_URI = bobl_url
# ADAPTED_ACOUSTIC_ID = None  # guid of a custom acoustic model
# ADAPTED_LANGUAGE_ID = None  # guid of a custom language model


def transcribe():
    logging.info("Starting transcription client...")

    # configure API key authorization: subscription_key
    configuration = cris_client.Configuration()
    configuration.api_key['Ocp-Apim-Subscription-Key'] = SUBSCRIPTION_KEY

    # create the client object and authenticate
    client = cris_client.ApiClient(configuration)

    # create an instance of the transcription api class
    transcription_api = cris_client.CustomSpeechTranscriptionsApi(api_client=client)

    # get all transcriptions for the subscription
    transcriptions: List[cris_client.Transcription] = transcription_api.get_transcriptions()

    logging.info("Deleting all existing completed transcriptions.")

    # delete all pre-existing completed transcriptions
    # if transcriptions are still running or not started, they will not be deleted
    for transcription in transcriptions:
        transcription_api.delete_transcription(transcription.id)

    logging.info("Creating transcriptions.")

    # transcription definition using custom models
#     transcription_definition = cris_client.TranscriptionDefinition(
#         name=NAME, description=DESCRIPTION, locale=LOCALE, recordings_url=RECORDINGS_BLOB_URI,
#         models=[cris_client.ModelIdentity(ADAPTED_ACOUSTIC_ID), cris_client.ModelIdentity(ADAPTED_LANGUAGE_ID)]
#     )

    # comment out the previous statement and uncomment the following to use base models for transcription
    transcription_definition = cris_client.TranscriptionDefinition(
         name=NAME, description=DESCRIPTION, locale=LOCALE, recordings_url=RECORDINGS_BLOB_URI
     )

    data, status, headers = transcription_api.create_transcription_with_http_info(transcription_definition)

    # extract transcription location from the headers
    transcription_location: str = headers["location"]

    # get the transcription Id from the location URI
    created_transcriptions = list()
    created_transcriptions.append(transcription_location.split('/')[-1])

    logging.info("Checking status.")

    completed, running, not_started = 0, 0, 0

    while completed < 1:
        # get all transcriptions for the user
        transcriptions: List[cris_client.Transcription] = transcription_api.get_transcriptions()

        # for each transcription in the list we check the status
        for transcription in transcriptions:
            if transcription.status == "Failed" or transcription.status == "Succeeded":
                # we check to see if it was one of the transcriptions we created from this client
                if transcription.id not in created_transcriptions:
                    continue

                completed += 1

                if transcription.status == "Succeeded":
                    results_uri = transcription.results_urls["channel_0"]
                    results = requests.get(results_uri)
                    logging.info("Transcription succeeded. Results: ")
                    logging.info(results.content.decode("utf-8"))
            elif transcription.status == "Running":
                running += 1
            elif transcription.status == "NotStarted":
                not_started += 1

        logging.info(f"Transcriptions status: {completed} completed, {running} running, {not_started} not started yet")
        # wait for 5 seconds
        time.sleep(5)

    input("Press any key...")


def main():
    transcribe()


if __name__ == "__main__":
    main()


2 个答案:

答案 0 :(得分:0)

  

我还想用不同的声音分割结果文本。

收到的笔录不包含任何说话者的概念。在这里,您只是称呼进行转录的端点,而内部没有说话人识别功能。

两件事:

  • 如果每个扬声器的音频都有单独的声道,那么您将获得结果(请参阅记录results_urls声道)
  • 如果没有,则可以使用Speaker Recognition API(文档here)进行此标识,但是:
    • 首先需要一些培训
    • 您的回复中没有偏移量,因此要与成绩单结果进行映射会很复杂

如您所述,Speech SDK's ConversationTranscriber API(文档here)目前仅限于en-USzh-CN语言

答案 1 :(得分:0)

与之前的回答相反,我的确得到了认可,而无需任何进一步培训或其他困难的演讲者。我关注了这个Github问题:

https://github.com/Azure-Samples/cognitive-services-speech-sdk/issues/286

这导致我进行以下更改:

transcription_definition = cris_client.TranscriptionDefinition(
    name=NAME, description=DESCRIPTION, locale=LOCALE, recordings_url=RECORDINGS_BLOB_URI,
    properties={"AddDiarization": "True"}
)

哪个会给出理想的结果。