我正在尝试实现一个神经网络,该网络获取HSL中的颜色代码,并尝试使用张量流将其转换为RGB,我不确定哪一部分是错误的,因为我正遭受巨大的损失并且准确性非常低>
我是这个概念的新手,我尝试遵循针对mnist数据库实施的另一个代码的步骤
import tensorflow as tf
import random as rd
import numpy as np
# Parameters
learning_rate = 0.1
num_steps = 1000
#batch_size = 128
display_step = 100
# Network Parameters
n_hidden_1 = 4 # 1st layer number of neurons
n_hidden_2 = 4 # 2nd layer number of neurons
num_input = 3 # data input (HSL values)
num_classes = 3 # data output (RGB values)
# tf Graph input
X = tf.placeholder(tf.float32, [None, num_input])
Y = tf.placeholder(tf.float32, [None, num_classes])
# Store layers weight & bias
layers = {
'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_hidden_2, num_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([num_classes]))
}
# Create model
def neural_net(x):
# Hidden fully connected layer with 256 neurons
layer_1 = tf.add(tf.matmul(x, layers['h1']), biases['b1'])
layer_1 = tf.nn.sigmoid(layer_1)
# Hidden fully connected layer with 256 neurons
layer_2 = tf.add(tf.matmul(layer_1, layers['h2']), biases['b2'])
layer_2 = tf.nn.sigmoid(layer_2)
# Output fully connected layer with a neuron for each class
out_layer = tf.matmul(layer_2, layers['out']) + biases['out']
return out_layer
# Construct model
logits = neural_net(X)
prediction = tf.nn.softmax(logits)
# Define loss and optimizer
loss_op = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(
logits = logits,
labels = Y
))
#changed adam optimizer to gradient descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss_op)
# Evaluate model
## changed prediction with logits
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
def hsl_to_rgb(input):
r=0
g=0
bb=0
h = input[0]
s = input[1]
l = input[2]
cc = (1 - abs(2 * l - 1)) * s
x = cc * (1 - abs((h / 60) % 2 - 1))
m = l - (cc / 2)
if 0 <= h < 60:
[r, g, bb] = [cc, x, 0]
if 60 <= h < 120:
[r, g, bb] = [x, cc, 0]
if 120 <= h < 180:
[r, g, bb] = [0, cc, x]
if 180 <= h < 240:
[r, g, bb] = [0, x, cc]
if 240 <= h < 300:
[r, g, bb] = [x, 0, cc]
if 300 <= h < 360:
[r, g, bb] = [cc, 0, x]
return [int(round((r + m) * 255)), int(round((g + m) * 255)),
int(round((bb + m) * 255))]
#feeding the input and output
inList = []
actualList = []
for i in range (100):
h = rd.randint(1, 361)
s = rd.random()
l = rd.random()
inList.append([h, s, l])
actualList.append(hsl_to_rgb([h, s, l]))
# Start training
with tf.Session() as sess:
# Run the initializer
sess.run(init)
for step in range(1, num_steps+1):
#batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop)
#sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
sess.run(train_op, feed_dict={X:inList, Y:actualList})
if step % display_step == 0 or step == 1:
# Calculate batch loss and accuracy
loss, acc = sess.run([loss_op, accuracy],
feed_dict{X:inList,Y:actualList})
print("Step " + str(step) + ", Minibatch Loss= " +
"{:.4f}".format(loss) + ", Training Accuracy= " + \
"{:.3f}".format(acc))
print("Optimization Finished!")
# Calculate accuracy
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={X:[[54,.26,.88]],
Y:[[232, 231, 216]]}))
答案 0 :(得分:0)
您需要规范化数据。
#feeding the input and output
inList = []
actualList = []
for i in range (100):
h = rd.randint(1, 361)
h /= 361
s = rd.random()
l = rd.random()
inList.append([h, s, l])
rgb = hsl_to_rgb([h, s, l])
rgb[0] /= 255
rgb[1] /= 255
rgb[2] /= 255
print(rgb)
actualList.append(rgb)
您可以将网络输出乘以255,以获得实际的rgb值。
希望有帮助。