使用PyCUDA和TensorRT遇到非法的内存访问

时间:2019-06-06 06:55:10

标签: python tensorflow pycuda tensorrt

我在Python代码中使用了TensorRT。所以我用PyCUDA。 在以下推论代码中,an illegal memory access was encountered处发生了stream.synchronize()

def infer(engine, x, batch_size, context):  
    inputs = []
    outputs = []
    bindings = []
    stream = cuda.Stream()
    for binding in engine:
        size = trt.volume(engine.get_binding_shape(binding)) * batch_size
        dtype = trt.nptype(engine.get_binding_dtype(binding))
        # Allocate host and device buffers
        host_mem = cuda.pagelocked_empty(size, dtype)
        device_mem = cuda.mem_alloc(host_mem.nbytes)
        # Append the device buffer to device bindings.
        bindings.append(int(device_mem))
        # Append to the appropriate list.
        if engine.binding_is_input(binding):
            inputs.append(HostDeviceMem(host_mem, device_mem))
        else:
            outputs.append(HostDeviceMem(host_mem, device_mem))
    img = np.array(x).ravel()
    np.copyto(inputs[0].host, 1.0 - img / 255.0)  
    [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
    context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)    
    # Transfer predictions back from the GPU.
    [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
    # Synchronize the stream
    stream.synchronize()
    # Return only the host outputs.

    return [out.host for out in outputs]

怎么了?

编辑: 我的程序是Tensorflow和TensorRT代码的组合。 该错误仅在我运行时发生

self.graph = tf.get_default_graph()
self.persistent_sess = tf.Session(graph=self.graph, config=tf_config)

在运行infer()之前。如果我不执行上述两行,就没有问题。

1 个答案:

答案 0 :(得分:0)

这里的问题是我有两个python代码。 说tensorrtcode.py和tensorflowcode.py。

tensorrtcode.py has 仅张量代码。

def infer(engine, x, batch_size, context):  
    inputs = []
    outputs = []
    bindings = []
    stream = cuda.Stream()
    for binding in engine:
        size = trt.volume(engine.get_binding_shape(binding)) * batch_size
        dtype = trt.nptype(engine.get_binding_dtype(binding))
        # Allocate host and device buffers
        host_mem = cuda.pagelocked_empty(size, dtype)
        device_mem = cuda.mem_alloc(host_mem.nbytes)
        # Append the device buffer to device bindings.
        bindings.append(int(device_mem))
        # Append to the appropriate list.
        if engine.binding_is_input(binding):
            inputs.append(HostDeviceMem(host_mem, device_mem))
        else:
            outputs.append(HostDeviceMem(host_mem, device_mem))
    img = np.array(x).ravel()
    np.copyto(inputs[0].host, 1.0 - img / 255.0)  
    [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
    context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)    
    # Transfer predictions back from the GPU.
    [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
    # Synchronize the stream
    stream.synchronize()
    # Return only the host outputs.

    return [out.host for out in outputs]

def main():
    .....
    infer(......)
    .....

然后 tensorflowcode.py has 仅使用tensorflow api并使用session执行。

self.graph = tf.get_default_graph()
self.persistent_sess = tf.Session(graph=self.graph, config=tf_config)

问题是当我需要将类从tensorflow连接到tensorrt类时, 在tensorrt的main中将tensorflow代码的类实例声明为

def main():    .....    t_flow_code = tensorflowclass()    推断(......)    .....

然后我遇到了illegal memory access was encountered happened at stream.synchronize()

错误

通过添加another session at tensorrt just before t_flow_code=tensorflowclass().

解决了问题

我不明白为什么需要它,因为我有自己的会话在tensorflow类上执行。为什么我在Tensorrt代码的类接口之前需要另一个会话。